Do you want to publish a course? Click here

Properties of compact 250 mu m emission and HII regions in M33 (HERM33ES)

184   0   0.0 ( 0 )
 Added by Simon Verley
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Within the framework of the HERM33ES Key Project, using the high resolution and sensitivity of the Herschel photometric data, we study the compact emission in the Local Group spiral galaxy M33 to investigate the nature of the compact SPIRE emission sources. We extracted a catalogue of sources at 250um in order to investigate the nature of this compact emission. Taking advantage of the unprecedented Herschel resolution at these wavelengths, we also focus on a more precise study of some striking Halpha shells in the northern part of the galaxy. We present a catalogue of 159 compact emission sources in M33 identified by SExtractor in the 250um SPIRE band that is the one that provides the best spatial resolution. We also measured fluxes at 24um and Halpha for those 159 extracted sources. The morphological study of the shells also benefits from a multiwavelength approach including Halpha, far-UV from GALEX, and infrared from both Spitzer IRAC 8um and MIPS 24um in order to make comparisons. For the 159 compact sources selected at 250um, we find a very strong Pearson correlation coefficient with the MIPS 24um emission (r24 = 0.94) and a rather strong correlation with the Halpha emission, although with more scatter (rHa = 0.83). The morphological study of the Halpha shells shows a displacement between far-ultraviolet, Halpha, and the SPIRE bands. The cool dust emission from SPIRE clearly delineates the Halpha shell structures. The very strong link between the 250um compact emission and the 24um and Halpha emissions, by recovering the star formation rate from standard recipes for HII regions, allows us to provide star formation rate calibrations based on the 250um compact emission alone. The different locations of the Halpha and far-ultraviolet emissions with respect to the SPIRE cool dust emission leads to a dynamical age of a few Myr for the Halpha shells and the associated cool dust.



rate research

Read More

123 - M. Relano , S. Verley , I. Perez 2013
Within the framework of the Herschel M 33 extended survey HerM33es we study the Spectral Energy Distribution (SED) of a set of HII regions in M 33 as a function of the morphology. We present a catalogue of 119 HII regions morphologically classified: 9 filled, 47 mixed, 36 shell, and 27 clear shell HII regions. For each object we extract the photometry at twelve available wavelength bands (from FUV-1516A to IR-250mi) and obtain the SED. We also obtain emission line profiles across the regions to study the location of the stellar, ionised gas, and dust components. We find trends for the SEDs related to the morphology, showing that the star and gas-dust configuration affects the ratios of the emission in different bands. The mixed and filled regions show higher emission at 24mi than the shells and clear shells, which could be due to the proximity of the dust to the stellar clusters in the case of mixed and filled regions. The FIR peak for shells and clear shells seems to be located towards longer wavelengths, indicating that the dust is colder for this type of objects.The logarithmic 100/70mi ratio for filled and mixed regions remains constant over one order of magnitude in Halpha and FUV surface brightness, while the shells and clear shells exhibit a wider range of values of almost two orders of magnitude. We derive dust masses and temperatures fitting the individual SEDs with dust models proposed in the literature. The derived dust mass range is between 10^2-10^4 Msun and the cold dust temperature spans T(cold)~12-27 K. The spherical geometrical model proposed for the Halpha clear shells is confirmed by the emission profile obtained from the observations and is used to infer the electron density within the envelope: the typical electron density is 0.7+-0.3 cm^-3, while filled regions can reach values two to five times higher.
126 - M. Relano , S. Verley , I. Perez 2011
Within the framework of the HerM33es Key Project for Herschel and in combination with multi-wavelength data, we study the Spectral Energy Distribution (SED) of a set of HII regions in the Local Group Galaxy M33. Using the Halpha emission, we perform a classification of a selected HII region sample in terms of morphology, separating the objects in filled, mixed, shell and clear shell objects. We obtain the SED for each HII region as well as a representative SED for each class of objects. We also study the emission distribution of each band within the regions. We find different trends in the SEDs for each morphological type that are related to properties of the dust and their associated stellar cluster. The emission distribution of each band within the region is different for each morphological type of object.
The conversion of the IR emission into star formation rate can be strongly dependent on the physical properties of the dust, which are affected by the environmental conditions where the dust is embedded. We study here the dust properties of a set of HII regions in the Local Group Galaxy M33 presenting different spatial configurations between the stars, gas and dust to understand the dust evolution under different environments. We model the SED of each region using the DustEM tool and obtain the mass relative to hydrogen for Very Small Grains (YVSG), Polycyclic Aromatic Hydrocarbons (YPAH) and Big Grains (YBG). The relative mass of the VSGs (YVSG/YTOT) is a factor of 1.7 higher for HII regions classified as filled and mixed than for regions presenting a shell structure. The enhancement of VSGs within NGC 604 and NGC 595 is correlated to expansive gas structures with velocities greater than 50 km/s. The gas-to-dust ratio derived for the HII regions in our sample exhibits two regimes related to the HI-H2 transition of the ISM. Regions corresponding to the HI diffuse regime present a gas-to-dust ratio compatible with the expected value if we assume that the gas-to-dust ratio scales linearly with metallicity, while regions corresponding to a H2 molecular phase present a flatter dust-gas surface density distribution. The fraction of VSGs can be affected by the conditions of the interstellar environment: strong shocks of 50-90 km/s existing in the interior of the most luminous HII regions can lead to fragmentation of BGs into smaller ones, while the more evolved shell and clear shell objects provide a more quiescent environment where reformation of dust BG grains might occur. The gas-to-dust variations found in this analysis might imply that grain coagulation and/or gas-phase metals incorporation to the dust mass is occurring in the interior of the HII regions in M33.
We study the far-infrared emission from the nearby spiral galaxy M33 in order to investigate the dust physical properties such as the temperature and the luminosity density across the galaxy. Taking advantage of the unique wavelength coverage (100, 160, 250, 350 and 500 micron) of the Herschel Space Observatory and complementing our dataset with Spitzer-IRAC 5.8 and 8 micron and Spitzer-MIPS 24 and 70 micron data, we construct temperature and luminosity density maps by fitting two modified blackbodies of a fixed emissivity index of 1.5. We find that the cool dust grains are heated at temperatures between 11 and 28 K with the lowest temperatures found in the outskirts of the galaxy and the highest ones in the center and in the bright HII regions. The infrared/submillimeter total luminosity (5 - 1000 micron) is estimated to be 1.9x10^9 Lsun. 59% of the total luminosity of the galaxy is produced by the cool dust grains (~15 K) while the rest 41% is produced by warm dust grains (~55 K). The ratio of the cool-to-warm dust luminosity is close to unity (within the computed uncertainties), throughout the galaxy, with the luminosity of the cool dust being slightly enhanced in the center of the galaxy. Decomposing the emission of the dust into two components (one emitted by the diffuse disk of the galaxy and one emitted by the spiral arms) we find that the fraction of the emission in the disk in the mid-infrared (24 micron) is 21%, while it gradually rises up to 57% in the submillimeter (500 micron). We find that the bulk of the luminosity comes from the spiral arm network that produces 70% of the total luminosity of the galaxy with the rest coming from the diffuse dust disk. The cool dust inside the disk is heated at a narrow range of temperatures between 18 and 15 K (going from the center to the outer parts of the galaxy).
184 - C. Kramer , M. Boquien , J. Braine 2011
Within the key project Herschel M33 extended survey (HerM33es), we are studying the physical and chemical processes driving star formation and galactic evolution in the nearby galaxy M33, combining the study of local conditions affecting individual star formation with properties only becoming apparent on global scales. Here, we present recent results obtained by the HerM33es team. Combining Spitzer and Herschel data ranging from 3.6um to 500um, along with HI, Halpha, and GALEX UV data, we have studied the dust at high spatial resolutions of 150pc, providing estimators of the total infrared (TIR) brightness and of the star formation rate. While the temperature of the warm dust at high brightness is driven by young massive stars, evolved stellar populations appear to drive the temperature of the cold dust. Plane-parallel models of photon dominated regions (PDRs) fail to reproduce fully the [CII], [OI], and CO maps obtained in a first spectroscopic study of one 2x2 subregion of M33, located on the inner, northern spiral arm and encompassing the HII region BCLMP302.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا