No Arabic abstract
Aims: We test predictions of evolution models on mixing of CNO-cycled products in massive stars from a fundamental perspective. Relative changes within the theoretical C:N:O abundance ratios and the buildup of helium are compared with observational results. Methods: A sample of well-studied Galactic massive stars is presented. High-quality optical spectra are carefully analysed using improved NLTE line-formation and comprehensive analysis strategies. The results are put in the context of the existing literature data. Results: A tight trend in the observed N/C vs. N/O ratios and the buildup of helium is found from the self-consistent analysis of main-sequence to supergiant stars for the first time. The catalytic nature of the CNO-cycles is confirmed quantitatively, though further investigations are required to derive a fully consistent picture. Our observational results support the case of strong mixing, as predicted e.g. by evolution models that consider magnetic fields or by models that have gone through the first dredge-up in the case of many supergiants.
The evolution of massive stars is still partly unconstrained. Mass, metallicity, mass loss and rotation are the main drivers of stellar evolution. Binarity and magnetic field may also significantly affect the fate of massive stars. Our goal is to investigate the evolution of single O stars in the Galaxy. For that, we use a sample of 74 objects comprising all luminosity classes and spectral types from O4 to O9.7. We rely on optical spectroscopy obtained in the context of the MiMeS survey of massive stars. We perform spectral modelling with the code CMFGEN. We determine the surface properties of the sample stars, with special emphasis on abundances of carbon, nitrogen and oxygen. Most of our sample stars have initial masses in the range 20 to 50 Msun. We show that nitrogen is more enriched and carbon/oxygen more depleted in supergiants than in dwarfs, with giants showing intermediate degrees of mixing. CNO abundances are observed in the range of values predicted by nucleosynthesis through the CNO cycle. More massive stars, within a given luminosity class, appear to be more chemically enriched than lower mass stars. We compare our results with predictions of three types of evolutionary models and show that, for two sets of models, 80% of our sample can be explained by stellar evolution including rotation. The effect of magnetism on surface abundances is unconstrained. Our study indicates that, in the 20-50 Msun mass range, the surface chemical abundances of most single O stars in the Galaxy are fairly well accounted for by stellar evolution of rotating stars.
Convection in the cores of massive stars becomes anisotropic when they rotate. This anisotropy leads to a misalignment of the thermal gradient and the thermal flux, which in turn results in baroclinicity and circulation currents in the upper radiative zone. We show that this induces a much stronger meridional flow in the radiative zone than previously thought. This drives significantly enhanced mixing, though this mixing does not necessarily reach the surface. The extra mixing takes on a similar form to convective overshooting, and is relatively insensitive to the rotation rate above a threshold, and may help explain the large overshoot distances inferred from observations. This has significant consequences for the evolution of these stars by enhancing core-envelope mixing.
Previous determinations of the oxygen isotopic ratios in AGB carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in LTE with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M_o) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the FDU according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies. Excluding these peculiar stars, AGB carbon stars occupy the same region as pre-solar type I oxide grains in a 17O/16O vs. 18O/16O diagram, showing little spread. This reinforces the idea that these grains were probably formed in low-mass stars during the previous O-rich phases.
Recently, Cheng et al. identified a number of massive white dwarfs (WD) that appear to have an additional heat source providing a luminosity near $approx 10^{-3}L_odot$ for multiple Gyr. In this paper we explore heating from electron capture and pycnonuclear reactions. We also explore heating from dark matter annihilation. WD stars appear to be too small to capture enough dark matter for this to be important. Finally, if dark matter condenses to very high densities inside a WD this could ignite nuclear reactions. We calculate the enhanced central density of a WD in the gravitational potential of a very dense dark matter core. While this might start a supernova, it seems unlikely to provide modest heating for a long time. We conclude that electron capture, pycnonuclear, and dark matter reactions are unlikely to provide significant heating in the massive WD that Cheng considers.
Massive star evolution remains only partly constrained. In particular, the exact role of rotation has been questioned by puzzling properties of OB stars in the Magellanic Clouds. Our goal is to study the relation between surface chemical composition and rotational velocity, and to test predictions of evolutionary models including rotation. We have performed a spectroscopic analysis of a sample of fifteen Galactic O7-8 giant stars. This sample is homogeneous in terms of mass, metallicity and evolutionary state. It is made of stars with a wide range of projected rotational velocities. We show that the sample stars are located on the second half of the main sequence, in a relatively narrow mass range (25-40 Msun). Almost all stars with projected rotational velocities above 100 km/s have N/C ratios about ten times the initial value. Below 100 km/s a wide range of N/C values is observed. The relation between N/C and surface gravity is well reproduced by various sets of models. Some evolutionary models including rotation are also able to consistently explain slowly rotating, highly enriched stars. This is due to differential rotation which efficiently transports nucleosynthesis products and allows the surface to rotate slower than the core. In addition, angular momentum removal by winds amplifies surface braking on the main sequence. Comparison of the surface composition of O7-8 giant stars with a sample of B stars with initial masses about four times smaller reveal that chemical enrichment scales with initial mass, as expected from theory. Although evolutionary models that include rotation face difficulties in explaining the chemical properties of O- and B-type stars at low metallicity, some of them can consistently account for the properties of main-sequence Galactic O stars in the mass range 25-40 Msun