Do you want to publish a course? Click here

Multi-Atomic Mirror for Perfect Reflection of Single Photons in A Wide Band of Frequency

221   0   0.0 ( 0 )
 Added by Yue Chang
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

A resonant two level atom doped in one dimensional waveguide behaves as a mirror, but this single-atom mirror can only reflect single photon perfectly at a specific frequency. For a one dimensional coupled-resonator waveguide, we propose to extend the perfect reflection region from a specific frequency to a wide band by placing many atoms individually in the resonators in a finite coordinate region of the waveguide. Such a doped resonator array promises us to control the propagation of a practical photon wave packet with certain momentum distribution instead of a single photon, which is ideally represented by a plane wave with specific momentum. The studies based on the discrete-coordinate scattering theory display that such hybrid structure indeed provides a near-perfect reflection for single photon in a wide band. We also calculated photon group velocity distribution, which shows that the perfect reflection with wide band exactly corresponds to the stopping light region.



rate research

Read More

The ability to transduce non-classical states of light from one wavelength to another is a requirement for integrating disparate quantum systems that take advantage of telecommunications-band photons for optical fiber transmission of quantum information and near-visible, stationary systems for manipulation and storage. In addition, transducing a single-photon source at 1.3 {mu}m to visible wavelengths for detection would be integral to linear optical quantum computation due to the challenges of detection in the near-infrared. Recently, transduction at single-photon power levels has been accomplished through frequency upconversion, but it has yet to be demonstrated for a true single-photon source. Here, we transduce the triggered single-photon emission of a semiconductor quantum dot at 1.3 {mu}m to 710 nm with a total detection (internal conversion) efficiency of 21% (75%). We demonstrate that the 710 nm signal maintains the quantum character of the 1.3 {mu}m signal, yielding a photon anti-bunched second-order intensity correlation, g^(2)(t), that shows the optical field is composed of single photons with g^(2)(0) = 0.165 < 0.5.
On-demand indistinguishable single photon sources are essential for quantum networking and communication. Semiconductor quantum dots are among the most promising candidates, but their typical emission wavelength renders them unsuitable for use in fibre networks. Here, we present quantum frequency conversion of near-infrared photons from a bright quantum dot to the telecommunication C-band, allowing integration with existing fibre architectures. We use a custom-built, tunable 2400 nm seed laser to convert single photons from 942 nm to 1550 nm in a difference frequency generation process. We achieve an end-to-end conversion efficiency of $sim$35%, demonstrate count rates approaching 1 MHz at 1550 nm with $g^{left(2right)}left(0right) = 0.04$, and achieve Hong-Ou-Mandel visibilities of 60%. We expect this scheme to be preferable to quantum dot sources directly emitting at telecom wavelengths for fibre based quantum networking.
Generation and manipulation of the quantum state of a single photon is at the heart of many quantum information protocols. There has been growing interest in using phase modulators as quantum optics devices that preserve coherence. In this Letter, we have used an electro-optic phase modulator to shape the state vector of single photons emitted by a quantum dot to generate new frequency components (modes) and explicitly demonstrate that the phase modulation process agrees with the theoretical prediction at a single photon level. Through two-photon interference measurements we show that for an output consisting of three modes (the original mode and two sidebands), the indistinguishability of the mode engineered photon, measured through the secondorder intensity correlation (g2(0)) is preserved. This work demonstrates a robust means to generate a photonic qubit or more complex state (e.g., a qutrit) for quantum communication applications by encoding information in the sidebands without the loss of coherence.
Radio-frequency reflectometry of nanodevices requires careful separation of signal quadratures to distinguish dissipative and dispersive contributions to the device impedance. A tunable phase shifter for this purpose is described and characterized. The phase shifter, consisting of a varactor-loaded transmission line, has the necessary tuning range combined with acceptable insertion loss across a frequency band 100 MHz - 1 GHz spanning most radio-frequency experiments. Its operation is demonstrated by demodulating separately the signals due to resistance and capacitance changes in a model device.
Fiber-based quantum networks require photons at telecommunications wavelengths to interconnect qubits separated by long distances. Trapped ions are leading candidates for quantum networking with high-fidelity two-qubit gates, long coherence times, and the ability to emit photons entangled with the ions internal qubit states. However, trapped ions typically emit photons at wavelengths incompatible with telecommunications fiber. Here, we demonstrate frequency conversion of visible photons emitted from a trapped ion into the telecommunications C-band. These results are an important step towards enabling a long-distance trapped ion quantum internet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا