Do you want to publish a course? Click here

Spectra associated to symmetric monoidal bicategories

260   0   0.0 ( 0 )
 Added by Angelica Osorno
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We show how to construct a Gamma-bicategory from a symmetric monoidal bicategory, and use that to show that the classifying space is an infinite loop space upon group completion. We also show a way to relate this construction to the classic Gamma-category construction for a bipermutative category. As an example, we use this machinery to construct a delooping of the K-theory of a bimonoidal category as defined by Baas-Dundas-Rognes.



rate research

Read More

The purpose of this foundational paper is to introduce various notions and constructions in order to develop the homotopy theory for differential graded operads over any ring. The main new idea is to consider the action of the symmetric groups as part of the defining structure of an operad and not as the underlying category. We introduce a new dual category of higher cooperads, a new higher bar-cobar adjunction with the category of operads, and a new higher notion of homotopy operads, for which we establish the relevant homotopy properties. For instance, the higher bar-cobar construction provides us with a cofibrant replacement functor for operads over any ring. All these constructions are produced conceptually by applying the curved Koszul duality for colored operads. This paper is a first step toward a new Koszul duality theory for operads, where the action of the symmetric groups is properly taken into account.
This paper proves three different coherence theorems for symmetric monoidal bicategories. First, we show that in a free symmetric monoidal bicategory every diagram of 2-cells commutes. Second, we show that this implies that the free symmetric monoidal bicategory on one object is equivalent, as a symmetric monoidal bicategory, to the discrete symmetric monoidal bicategory given by the disjoint union of the symmetric groups. Third, we show that every symmetric monoidal bicategory is equivalent to a strict one. We give two topological applications of these coherence results. First, we show that the classifying space of a symmetric monoidal bicategory can be equipped with an E_{infty} structure. Second, we show that the fundamental 2-groupoid of an E_n space, n geq 4, has a symmetric monoidal structure. These calculations also show that the fundamental 2-groupoid of an E_3 space has a sylleptic monoidal structure.
We start from any small strict monoidal braided Ab-category and extend it to a monoidal nonstrict braided Ab-category which contains braided bialgebras. The objects of the original category turn out to be modules for these bialgebras
We define a notion of symmetric monoidal closed (SMC) theory, consisting of a SMC signature augmented with equations, and describe the classifying categories of such theories in terms of proof nets.
125 - Stefano Gogioso 2018
In previous work we proved that, for categories of free finite-dimensional modules over a commutative semiring, linear compact-closed symmetric monoidal structure is a property, rather than a structure. That is, if there is such a structure, then it is uniquely defined (up to monoidal equivalence). Here we provide a novel unifying category-theoretic notion of symmetric monoidal structure with local character, which we prove to be a property for a much broader spectrum of categorical examples, including the infinite-dimensional case of relations over a quantale and the non-free case of finitely generated modules over a principal ideal domain.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا