Do you want to publish a course? Click here

SPIRE imaging of M82: cool dust in the wind and tidal streams

109   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

M82 is a unique representative of a whole class of galaxies, starbursts with superwinds, in the Very Nearby Galaxy Survey with Herschel. In addition, its interaction with the M81 group has stripped a significant portion of its interstellar medium from its disk. SPIRE maps now afford better characterization of the far-infrared emission from cool dust outside the disk, and sketch a far more complete picture of its mass distribution and energetics than previously possible. They show emission coincident in projection with the starburst wind and in a large halo, much more extended than the PAH band emission seen with Spitzer. Some complex substructures coincide with the brightest PAH filaments, and others with tidal streams seen in atomic hydrogen. We subtract the far-infrared emission of the starburst and underlying disk from the maps, and derive spatially-resolved far-infrared colors for the wind and halo. We interpret the results in terms of dust mass, dust temperature, and global physical conditions. In particular, we examine variations in the dust physical properties as a function of distance from the center and the wind polar axis, and conclude that more than two thirds of the extraplanar dust has been removed by tidal interaction, and not entrained by the starburst wind.



rate research

Read More

111 - C.L. Carilli 2009
When, and how, did the first galaxies and supermassive black holes (SMBH) form, and how did they reionization the Universe? First galaxy formation and cosmic reionization are among the last frontiers in studies of cosmic structure formation. We delineate the detailed astrophysical probes of early galaxy and SMBH formation afforded by observations at centimeter through submillimeter wavelengths. These observations include studies of the molecular gas (= the fuel for star formation in galaxies), atomic fine structure lines (= the dominant ISM gas coolant), thermal dust continuum emission (= an ideal star formation rate estimator), and radio continuum emission from star formation and relativistic jets. High resolution spectroscopic imaging can be used to study galaxy dynamics and star formation on sub-kpc scales. These cm and mm observations are the necessary compliment to near-IR observations, which probe the stars and ionized gas, and X-ray observations, which reveal the AGN. Together, a suite of revolutionary observatories planned for the next decade from centimeter to X-ray wavelengths will provide the requisite panchromatic view of the complex processes involved in the formation of the first generation of galaxies and SMBHs, and cosmic reionization.
We present the observations of the starburst galaxy M82 taken with the Herschel SPIRE Fourier Transform Spectrometer. The spectrum (194-671 {mu}m) shows a prominent CO rotational ladder from J = 4-3 to 13-12 emitted by the central region of M82. The fundamental properties of the gas are well constrained by the high J lines observed for the first time. Radiative transfer modeling of these high-S/N 12CO and 13CO lines strongly indicates a very warm molecular gas component at ~500 K and pressure of ~3x10^6 K cm^-3, in good agreement with the H_2 rotational lines measurements from Spitzer and ISO. We suggest that this warm gas is heated by dissipation of turbulence in the interstellar medium (ISM) rather than X-rays or UV flux from the straburst. This paper illustrates the promise of the SPIRE FTS for the study of the ISM of nearby galaxies.
We analyse Herschel/SPIRE images of the edge-on spiral galaxy NGC 891 at 250, 350 and 500 micron. Using a 3D radiative transfer model we confirm that the dust has a radial fall-off similar to the stellar disk. The dust disk shows a break at about 12 kpc from the center, where the profile becomes steeper. Beyond this break, emission can be traced up to 90% of the optical disk in the NE side. On the SW, we confirm dust emission associated with the extended, asymmetric HI disk, previously detected by the Infrared Space Observatory (ISO). This emission is marginally consistent with the large diffuse dust disk inferred from radiative transfer fits to optical images. No excess emission is found above the plane beyond that of the thin, unresolved, disk.
150 - H.L. Gomez , M. Baes , L. Cortese 2010
We present Herschel-SPIRE observations at 250-500um of the giant elliptical galaxy M86 and examine the distribution of the resolved cold dust emission and its relation with other galactic tracers. The SPIRE images reveal three dust components: emission from the central region; a dust lane extending north-south; and a bright emission feature 10kpc to the south-east. We estimate that approximately 10^6 solar masses of dust is spatially coincident with atomic and ionized hydrogen, originating from stripped material from the nearby spiral NGC4438 due to recent tidal interactions with M86. The gas-to-dust ratio of the cold gas component ranges from ~20-80. We discuss the different heating mechanisms for the dust features.
While various codes exist to systematically and robustly find haloes and subhaloes in cosmological simulations (Knebe et al., 2011, Onions et al., 2012), this is the first work to introduce and rigorously test codes that find tidal debris (streams and other unbound substructure) in fully cosmological simulations of structure formation. We use one tracking and three non-tracking codes to identify substructure (bound and unbound) in a Milky Way type simulation from the Aquarius suite (Springel et al., 2008) and post-process their output with a common pipeline to determine the properties of these substructures in a uniform way. By using output from a fully cosmological simulation, we also take a step beyond previous studies of tidal debris that have used simple toy models. We find that both tracking and non-tracking codes agree well on the identification of subhaloes and more importantly, the {em unbound tidal features} associated with them. The distributions of basic properties of the total substructure distribution (mass, velocity dispersion, position) are recovered with a scatter of $sim20%$. Using the tracking code as our reference, we show that the non-tracking codes identify complex tidal debris with purities of $sim40%$. Analysing the results of the substructure finders, we find that the general distribution of {em substructures} differ significantly from the distribution of bound {em subhaloes}. Most importantly, both bound and unbound {em substructures} together constitute $sim18%$ of the host halo mass, which is a factor of $sim2$ higher than the fraction in self-bound {em subhaloes}. However, this result is restricted by the remaining challenge to cleanly define when an unbound structure has become part of the host halo. Nevertheless, the more general substructure distribution provides a more complete picture of a halos accretion history.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا