Do you want to publish a course? Click here

The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory

126   0   0.0 ( 0 )
 Added by Albrecht Poglitsch
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESAs far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16x25 pixels, each, and two filled silicon bolometer arrays with 16x32 and 32x64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60-210mu m wavelength regime. In photometry mode, it simultaneously images two bands, 60-85mu m or 85-125mum and 125-210mu m, over a field of view of ~1.75x3.5, with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47x47, resolved into 5x5 pixels, with an instantaneous spectral coverage of ~1500km/s and a spectral resolution of ~175km/s. We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the Performance Verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.



rate research

Read More

A 3He sorption cooler produced the operational temperature of 285mK for the bolometer arrays of the Photodetector Array Camera and Spectrometer (PACS) instrument of the Herschel Space Observatory. This cooler provided a stable hold time between 60 and 73h, depending on the operational conditions of the instrument. The respective hold time could be determined by a simple functional relation established early on in the mission and reliably applied by the scientific mission planning for the entire mission. After exhaustion of the liquid 3He due to the heat input by the detector arrays, the cooler was recycled for the next operational period following a well established automatic procedure. We give an overview of the cooler operations and performance over the entire mission and distinguishing in-between the start conditions for the cooler recycling and the two main modes of PACS photometer operations. As a spin-off, the cooler recycling temperature effects on the Herschel cryostat 4He bath were utilized as an alternative method to dedicated Direct Liquid Helium Content Measurements in determining the lifetime of the liquid Helium coolant.
The development program of the flight model imaging camera for the PACS instrument on-board the Herschel spacecraft is nearing completion. This camera has two channels covering the 60 to 210 microns wavelength range. The focal plane of the short wavelength channel is made of a mosaic of 2x4 3-sides buttable bolometer arrays (16x16 pixels each) for a total of 2048 pixels, while the long wavelength channel has a mosaic of 2 of the same bolometer arrays for a total of 512 pixels. The 10 arrays have been fabricated, individually tested and integrated in the photometer. They represent the first filled arrays of fully collectively built bolometers with a cold multiplexed readout, allowing for a properly sampled coverage of the full instrument field of view. The camera has been fully characterized and the ground calibration campaign will take place after its delivery to the PACS consortium in mid 2006. The bolometers, working at a temperature of 300 mK, have a NEP close to the BLIP limit and an optical bandwidth of 4 to 5 Hz that will permit the mapping of large sky areas. This paper briefly presents the concept and technology of the detectors as well as the cryocooler and the warm electronics. Then we focus on the performances of the integrated focal planes (responsivity, NEP, low frequency noise, bandwidth).
Data from the Herschel Space Observatory is freely available to the public but no uniformly processed catalogue of the observations has been published so far. To date, the Herschel Science Archive does not contain the exact sky coverage (footprint) of individual observations and supports search for measurements based on bounding circles only. Drawing on previous experience in implementing footprint databases, we built the Herschel Footprint Database and Web Services for the Herschel Space Observatory to provide efficient search capabilities for typical astronomical queries. The database was designed with the following main goals in mind: (a) provide a unified data model for meta-data of all instruments and observational modes, (b) quickly find observations covering a selected object and its neighbourhood, (c) quickly find every observation in a larger area of the sky, (d) allow for finding solar system objects crossing observation fields. As a first step, we developed a unified data model of observations of all three Herschel instruments for all pointing and instrument modes. Then, using telescope pointing information and observational meta-data, we compiled a database of footprints. As opposed to methods using pixellation of the sphere, we represent sky coverage in an exact geometric form allowing for precise area calculations. For easier handling of Herschel observation footprints with rather complex shapes, two algorithms were implemented to reduce the outline. Furthermore, a new visualisation tool to plot footprints with various spherical projections was developed. Indexing of the footprints using Hierarchical Triangular Mesh makes it possible to quickly find observations based on sky coverage, time and meta-data. The database is accessible via a web site (http://herschel.vo.elte.hu) and also as a set of REST web service functions.
A new concept of bolometer arrays is used for the imager of PACS, one of the three instruments aboard the future Herschel space observatory. Within the framework of PACS photometer characterization, irradiation tests were performed on a dedicated bolometer array in order to study long-term and short-term radiation effects. The main objective was to study particles impacts on the detectors applicable to future observations in orbit and possible hard and/or soft curing to restore its performances. Cobalt-60 gamma ray irradiations did not show significant degradation, so we mainly focused on single events effects (SEE). Protons and alphas irradiations were then performed at the Van de Graaf tandem accelerator at the Institut de Physique Nucleaire (IPN, Orsay, France), respectively at 20MeV and 30MeV. Observation showed that the shape of signal perturbations clearly depends on the location of the impacts either on the detector itself or the read-out circuit. Software curing has then to be anticipated in order to deglitch the signal. This test gives also a unique opportunity to measure some parameters of the detector: electrical crosstalk and thermo- electrical time constant. However a detailed bolometer model is necessary to understand the contribution of the thermal response in relation with the electrical response. It will be the second step of our study. Finally the complete radiation evaluation proved that this detector can be used in spatial experiments.
113 - T.Y. Saito , S. Sun , R. Orito 2011
The hybrid photodetector (HPD) R9792U-40 has very high peak quantum efficiency ($>50$% at 500 nm), excellent charge resolution and very low after-pulsing probability (500 times less than that of currently used photomultipliers (PMTs)). These features will improve the sensitivity, the energy resolution and the energy threshold of the MAGIC telescope. On the other hand, its high photocathode voltage (-8 to -6 kV), relatively short photocathode lifetime, and relatively large temperature dependence of the gain need to be taken care of. In February 2010, 6 HPDs were installed in a corner of the MAGIC-II camera for a field test. Here we report the results of the field test and our future plans.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا