Do you want to publish a course? Click here

Connected sums of Gorenstein local rings

176   0   0.0 ( 0 )
 Added by H Ananthnarayan
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

A new construction of rings is introduced, studied, and applied. Given surjective homomorphisms $Rto Tgets S$ of local rings, and ideals in $R$ and $S$ that are isomorphic to some $T$-module $V$, the emph{connected sum} $R#_TS$ is defined to be the local ring obtained by factoring out the diagonal image of $V$ in the fiber product $Rtimes_TS$. When $T$ is Cohen-Macaulay of dimension $d$ and $V$ is a canonical module of $T$, it is proved that if $R$ and $S$ are Gorenstein of dimension $d$, then so is $R#_TS$. This result is used to study how closely an artinian ring can be approximated by Gorenstein rings mapping onto it. It is proved that when $T$ is a field the cohomology algebra $Ext^*_{R#_kS}(k,k)$ is an amalgam of the algebras $Ext^*_{R}(k,k)$ and $Ext^*_{S}(k,k)$ over isomorphic polynomial subalgebras generated by one element of degree 2. This is used to show that when $T$ is regular, the ring $R#_TS$ almost never is complete intersection.



rate research

Read More

In 2012, Ananthnarayan, Avramov and Moore give a new construction of Gorenstein rings from two Gorenstein local rings, called their connected sum. Given a Gorenstein ring, one would like to know whether it decomposes as a connected sum and if so, what are its components. We answer these questions in the Artinian case and investigate conditions on the ring which force it to be indecomposable as a connected sum. We further give a characterization for Gorenstein Artin local rings to be decomposable as connected sums, and as a consequence, obtain results about its Poincare series and minimal number of generators of its defining ideal. Finally, in the graded case, we show that the indecomposable components appearing in the connected sum decomposition are unique up to isomorphism.
In 2012, Ananthnarayan, Avramov and Moore gave a new construction of Gorenstein rings from two Gorenstein local rings, called their connected sum. In this article, we investigate conditions on the associated graded ring of a Gorenstein Artin local ring Q, which force it to be a connected sum over its residue field. In particular, we recover some results regarding short, and stretched, Gorenstein Artin rings. Finally, using these decompositions, we obtain results about the rationality of the Poincare series of Q.
A connected sum construction for local rings was introduced in a paper by H. Ananthnarayan, L. Avramov, and W.F. Moore. In the graded Artinian Gorenstein case, this can be viewed as an algebraic analogue of the topological construction of the same name. We give two alternative description of this algebraic connected sum: the first uses algebraic analogues of Thom classes of vector bundles and Gysin homomorphisms, the second is in terms of Macaulay dual generators. We also investigate the extent to which the connected sum construction preserves the weak or strong Lefschetz property, thus providing new classes of rings which satisfy these properties.
243 - Amanda Croll 2013
It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t,t^{-1}]-module associated to R. This module, denoted J(R), is the free Z[t,t^{-1}]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The main result is a structure theorem for J(R) when R is a complete Gorenstein local ring; the link between periodicity and torsion stated above is a corollary.
Building on previous work by the same authors, we show that certain ideals defining Gorenstein rings have expected resurgence, and thus satisfy the stable Harbourne Conjecture. In prime characteristic, we can take any radical ideal defining a Gorenstein ring in a regular ring, provided its symbolic powers are given by saturations with the maximal ideal. While this property is not suitable for reduction to characteristic $p$, we show that a similar result holds in equicharacteristic $0$ under the additional hypothesis that the symbolic Rees algebra of $I$ is noetherian.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا