Multi-Component Quantum Gases in Spin-Dependent Hexagonal Lattices


Abstract in English

Periodicity is one of the most fundamental structural characteristics of systems occurring in nature. The properties of these systems depend strongly on the symmetry of the underlying periodic structure. In solid state materials - for example - the static and transport properties as well as the magnetic and electronic characteristics are crucially influenced by the crystal symmetry. In this context, hexagonal structures play an extremely important role and lead to novel physics like that of carbon nanotubes or graphene. Here we report on the first realization of ultracold atoms in a spin-dependent optical lattice with hexagonal symmetry. We show how combined effects of the lattice and interactions between atoms lead to a forced antiferromagnetic Neel order when two spin-components localize at different lattice sites. We also demonstrate that the coexistence of two components - one Mott-insulating and the other one superfluid - leads to the formation of a forced supersolid. Our observations are consistent with theoretical predictions using Gutzwiller mean-field theory.

Download