Do you want to publish a course? Click here

Spatially resolved XMM-Newton analysis and a model of the nonthermal emission of MSH 15-52

164   0   0.0 ( 0 )
 Added by Fabian Sch\\\"ock
 Publication date 2010
  fields Physics
and research's language is English
 Authors F. M. Schock




Ask ChatGPT about the research

We present an X-ray analysis and a model of the nonthermal emission of the pulsar wind nebula (PWN) MSH15-52. We analyzed XMM-Newton data to obtain the spatially resolved spectral parameters around the pulsar PSRB1509-58. A steepening of the fitted power-law spectra and decrease in the surface brightness is observed with increasing distance from the pulsar. In the second part of this paper, we introduce a model for the nonthermal emission, based on assuming the ideal magnetohydrodynamic limit. This model is used to constrain the parameters of the termination shock and the bulk velocity of the leptons in the PWN. Our model is able to reproduce the spatial variation of the X-ray spectra. The parameter ranges that we found agree well with the parameter estimates found by other authors with different approaches. In the last part of this paper, we calculate the inverse Compton emission from our model and compare it to the emission detected with the H.E.S.S. telescope system. Our model is able to reproduce the flux level observed with H.E.S.S., but not the spectral shape of the observed TeV {gamma}-ray emission.



rate research

Read More

We present the results of a BeppoSAX observation of the Supernova Remnant MSH 15-52, associated with the pulsar PSR B1509-58, and discuss its main morphological and spectroscopic properties in the 1.6--200 keV energy range (MECS and PDS instruments). The two main structures of the remnant, the Southern Nebula, the plerion centered on the pulsar, and the Northern Nebula, are clearly visible in the MECS, with the former showing a much a harder spectrum. Furthermore, a diffuse extended emission surrounds the whole remnant up to ~ 17 from the center. Non-thermal flux is detected in the PDS up to 200 keV as well, and it appears that also in this energy range the emission is not concentrated in the central region around the pulsar. These data imply that the plerion extends up to a few tens of parsecs from the pulsar.
SPT0346-52 is one of the most most luminous and intensely star-forming galaxies in the universe, with L_FIR > 10^13 L_sol and Sigma_SFR ~ 4200 M_sol yr^-1 kpc^-2. In this paper, we present ~0.15 ALMA observations of the [CII]158micron emission line in this z=5.7 dusty star-forming galaxy. We use a pixellated lensing reconstruction code to spatially and kinematically resolve the source-plane [CII] and rest-frame 158 micron dust continuum structure at ~700 pc (~0.12) resolution. We discuss the [CII] deficit with a pixellated study of the L_[CII]/L_FIR ratio in the source plane. We find that individual pixels within the galaxy follow the same trend found using unresolved observations of other galaxies, indicating that the deficit arises on scales <700 pc. The lensing reconstruction reveals two spatially and kinematically separated components (~1 kpc and ~500 km s^-1 apart) connected by a bridge of gas. Both components are found to be globally unstable, with Toomre Q instability parameters << 1 everywhere. We argue that SPT0346-52 is undergoing a major merger, which is likely driving the intense and compact star formation.
W49B is the youngest SNR to date that exhibits recombining plasma. The two prevailing theories of this overionization are rapid cooling via adiabatic expansion or through thermal conduction with an adjacent cooler medium. To constrain the origin of the recombining plasma in W49B, we perform a spatially-resolved spectroscopic study of deep XMM-Newton data across 46 regions. We adopt a 3-component model (with one ISM and two ejecta components), and we find that recombining plasma is present throughout the entire SNR, with increasing overionization from east to west. The latter result is consistent with previous studies, and we attribute the overionization in the west to adiabatic expansion. However, our findings contrast these prior works as we find evidence of overionization in the east as well. As the SNR is interacting with molecular material there, we investigate the plausibility of thermal conduction as the origin of the rapid cooling. We show that based on the estimated timescales, it is possible that small-scale thermal conduction through evaporation of clumpy, dense clouds with a scale of 0.1-1.0 pc can explain the observed overionization in the east.
285 - D. Marsden 1997
We present the results of observations of the PSR B1509$-$58/MSH 15$-$52 system in X-rays ($2-250$ keV) by the Rossi X-ray Timing Explorer. The spectra of the peak of the pulsed component (radio phase $0.17-0.53$) is fit by a power law of photon index $1.36pm0.01$, with no evidence of a high energy spectral break seen up to $sim200$ keV. For the off-pulse spectral component, the spectrum from $2-250$ keV is fit by a power law of photon index $2.215pm0.005$. An iron emission line at 6.7 keV with an equivalent width of 129 eV improves the fit, but only at a marginal significance. Thermal bremsstrahlung and Raymond-Smith models produce much worse fits to the unpulsed data. The lack of a high energy spectral break in the pulsed emission implies an efficiency of $geq 3%$ in the conversion of pulsar spindown energy to pulsed X-rays in the system.
We study the Frequency Resolved Spectra of the Seyfert galaxy MCG -6-30-15 obtained during two recent XMM-Newton observations. Splitting the Fourier spectra in soft (<2 keV) and hard (>2 keV) bands, we find that the soft band has a variability amplitude larger than the hard one on time scales longer than 10 ksec, while the opposite is true on time scales shorter than 3 ksec. Both the soft and hard band spectra are well fitted by power laws of different indices. The spectra of the hard band become clearly softer as the Fourier Frequency decreases from 7x10^{-4} Hz to 10^{-5} Hz, while the spectral slope of the soft band power law component is independent of the Fourier frequency. The well known broad Fe Ka feature is absent at all frequency bins; this result implies that this feature is not variable on time scales shorter than ~10^5 sec, in agreement with recent line variability studies. Strong spectral features are also present in the soft X-ray band (at E~0.7), clearly discernible in all Fourier Frequency bins. This fact is consistent with the assumption that they are due to absorption by intervening matter within the source.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا