Do you want to publish a course? Click here

Super-v{C}erenkov Radiation as New Exotic Decay in Refractive Media

314   0   0.0 ( 0 )
 Added by Mihai L. Ion
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

Generalized Super-v{C}erenkov Radiations (Sv{C}R), as well as their Sv{C}R-signatures are investigated. Two general Sv{C}R-coherence conditions are found as two natural extremes of the same spontaneous particles decays in (dielectric, nuclear or hadronic) media. The main results on the experimental test of the super-coherence conditions, obtained by using the experimental data from BNL, are presented. The interpretation of the observed anomalous v{C}erenkov rings as experimental evidence for the HE-component of the Sv{C}R is discussed.



rate research

Read More

Generalized mesonic Super-v{C}erenkov Radiations (Sv{C}R) are investigated. The energy behavior of the pionic refractive index in the low energy pionic SCR-sector is presented. We estimated that the true coherent SCR-pion emission is possible mainly in the SCRS-energy bands 190-315 MeV for all pions; 910-960 MeV only for positive pions, and 80-1000 GeV for all pions, in certain nuclear reactions. We predicted that Sv{C}R-pionic band will be enlarged for the pion energies higher than 80 GeV. The strong correlations between angle of SCR-pion emission and (meson and projectile)-energies are evidentiated. The spectral distributions of the SCR-pions are presented and the position of their maxima are estimated. The agreement with the available experimental data is discussed.
CANGAROO group has constructed the new large imaging Air v Cerenkov telescope to exploit hundred GeV region gamma-ray astronomy in March 1999 at Woomera, South Australia. It has a 7m parabolic mirror consisting of 60 small plastic spherical mirrors, and a fine imaging camera with 512 PMTs covering the field of view of 3 degree. Observation will start from July 1999.
The shape of the beta decay energy distribution is sensitive to the mass of the electron neutrino. Attempts to measure the endpoint shape of tritium decay have so far seen no distortion from the zero-mass form, thus placing an upper limit of m_nu_beta < 2.3 eV. Here we show that a new type of electron energy spectroscopy could improve future measurements of this spectrum and therefore of the neutrino mass. We propose to detect the coherent cyclotron radiation emitted by an energetic electron in a magnetic field. For mildly relativistic electrons, like those in tritium decay, the relativistic shift of the cyclotron frequency allows us to extract the electron energy from the emitted radiation. We present calculations for the energy resolution, noise limits, high-rate measurement capability, and systematic errors expected in such an experiment.
Pachmarhi Array of v{C}erenkov Telescopes (PACT), based on wavefront sampling technique, has been used for detecting TeV gamma rays from galactic and extra-galactic $gamma $-ray sources. The Blazar, Mkn 421 was one such extra-galactic source observed during the winter nights of 2000 and 2001. We have carried out a preliminary analysis of the data taken during the nights of January, 2000 and 2001. Results show a significant gamma ray signal from this source during both these periods above a threshold energy of 900 GeV. The source was contemporaneously observed by CAT imaging telescope during the first episode of January 2000 while HEGRA CT1 was observing the source during the second episode. Both these observations have detected variable $gamma $-ray emission this source and they reported that it was flaring during both these periods. The light curve in the TeV gamma ray range derived from the first PACT observations during both these episodes is in agreement with that reported by other experiments. The analysis procedure and the preliminary results will be presented and discussed.
A new search for the decay modes of the 4-fold forbidden non-unique decay of $^{50}$V has been performed at the Gran Sasso Underground Laboratory (LNGS). In total an exposure of 197 kg $times$ d has been accumulated. The half-life for the electron capture into the first excited state of $^{50}$Ti has been measured with the highest precision to date as $2.67_{-0.18}^{+0.16} times 10^{17}$ yr (68% C.I.) in which systematics uncertainties dominate. The search for the $beta$-decay into the first excited state of $^{50}$Cr resulted in a lower limit of ${1.9} times 10^{19}$ yr (90% C.I.), which is an improvement of almost one order of magnitude compared to existing results. The sensitivity of the new measurement is now in the region of theoretical predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا