Do you want to publish a course? Click here

BTZ-like black holes in even dimensional Lovelock theories

188   0   0.0 ( 0 )
 Added by Alex Giacomini
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the present paper, a new class of black hole solutions is constructed in even dimensional Lovelock Born-Infeld theory. These solutions are interesting since, in some respects, they are closer to black hole solutions of an odd dimensional Lovelock Chern-Simons theory than to the more usual black hole solutions in even dimensions. This hybrid behavior arises when non-Einstein base manifolds are considered. The entropies of these solutions have been analyzed using Wald formalism. These metrics exhibit a quite non-trivial behavior. Their entropies can change sign and can even be identically zero depending on the geometry of the corresponding base manifolds. Therefore, the request of thermodynamical stability constrains the geometry of the non-Einstein base manifolds. It will be shown that some of these solutions can support non-vanishing torsion. Eventually, the possibility to define a sort of topological charge associated with torsion will be discussed.



rate research

Read More

We obtain rotating black hole solutions to the novel 3D Gauss-Bonnet theory of gravity recently proposed. These solutions generalize the BTZ metric and are not of constant curvature. They possess an ergoregion and outer horizon, but do not have an inner horizon. We present their basic properties and show that they break the universality of thermodynamics present for their static charged counterparts, whose properties we also discuss. Extending our considerations to higher dimensions, we also obtain novel 4D Gauss-Bonnet rotating black strings.
75 - Chao Liang , Li Gong , 2017
Recent studies have presented the interpretation of thermodynamic enthalpy for the mass of BTZ black holes and the corresponding Smarr formula. All these are made in the background of three-dimensional (3D) general relativity. In this paper, we extend such interpretation into general 3D gravity models. It is found that the direct extension is unfeasible and some extra conditions are required to preserve both the Smarr formula and the first law of black hole thermodynamics. Thus, BTZ black hole thermodynamics enforces some constraints for general 3D gravity models, and these constraints are consistent with all previous discussions.
Here we have developed the general parametrization for spherically symmetric and asymptotically flat black-hole spacetimes in an arbitrary metric theory of gravity. The parametrization is similar in spirit to the parametrized post-Newtonian (PPN) approximation, but valid in the whole space outside the event horizon, including the near horizon region. This generalizes the continued-fraction expansion method in terms of a compact radial coordinate suggested by Rezzolla and Zhidenko [Phys.Rev.D 90 8, 084009 (2014)] for the four-dimensional case. As the first application of our higher-dimensional parametrization we have approximated black-hole solutions of the Einstein-Lovelock theory in various dimensions. This allows one to write down the black-hole solution which depends on many parameters (coupling constants in front of higher curvature terms) in a very compact analytic form, which depends only upon a few parameters of the parametrization. The approximate metric deviates from the exact (but extremely cumbersome) expressions by fractions of one percent even at the first order of the continued-fraction expansion, which is confirmed here by computation of observable quantities, such as quasinormal modes of the black hole.
It is found that, when the coupling constants $alpha_p$ in the theory of regularized Lovelock gravity are properly chosen and the number of Lovelock tensors $prightarrow infty$, there exist a fairly large number of nonsingular (singularity free) black holes and nonsingular universes. Some nonsingular black holes have numerous horizons and numerous energy levels (a bit like atom) inside the outer event horizon. On the other hand, some nonsingular universes start and end in two de Sitter phases. The ratio of energy densities for the two phases are $120$ orders. It is thus helpful to understand the cosmological constant problem.
In order to classify and understand the spacetime structure, investigation of the geodesic motion of massive and massless particles is a key tool. So the geodesic equation is a central equation of gravitating systems and the subject of geodesics in the black hole dictionary attracted much attention. In this paper, we give a full description of geodesic motions in three-dimensional spacetime. We investigate the geodesics near charged BTZ black holes and then generalize our prescriptions to the case of massive gravity. We show that electric charge is a critical parameter for categorizing the geodesic motions of both lightlike and timelike particles. In addition, we classify the type of geodesics based on the particle properties and geometry of spacetime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا