Do you want to publish a course? Click here

Wide-field multi-color photometry of the Galactic globular cluster NGC 1261

268   0   0.0 ( 0 )
 Added by Valery V. Kravtsov
 Publication date 2010
  fields Physics
and research's language is English
 Authors V. Kravtsov




Ask ChatGPT about the research

(Abriged)This work studies in more detail the stellar population, including its photometric properties and characteristics, in the rarely studied southern Galactic globular cluster NGC 1261. We focus on the brighter sequences of the clusters color-magnitude diagram (CMD). Like in our previous works, we rely upon photometry in several passbands to achieve more reliable results and conclusions. We carried out and analyzed new multi-color photometry of NGC 1261 in UBVI reaching below the turnoff point in all passbands in a fairly extended cluster field, about 14x14. We found several signs of the inhomogeneity (multiplicity) in the stellar population. The most prominent of them are: (1) the dependence of the radial distribution of sub-giant branch (SGB) stars in the cluster on their U magnitude, with brighter stars less centrally concentrated at the 99.9 % level than their fainter counterparts; (2) the dependence of the location of red giant branch (RGB) stars in the U-(U-B) CMD on their radial distance from the cluster center, with the portion of stars bluer in the (U-B) color increasing towards the cluster outskirts. Additionally, the radial variation of the RGB luminosity function in the bump region is suspected. We assume that both the SGB stars brighter in the U and the RGB stars bluer in the (U-B) color are probably associated with blue horizontal branch stars, because of a similarity in their radial distribution in the cluster. We estimated the metalicity of NGC 1261 from the slope of the RGB in U-based CMDs and the location of the RGB bump on the branch. These metallicity indicators give [Fe/H]zw = -1.34 +/- 0.16 dex and [Fe/H]zw = -1.41 +/- 0.10 dex, respectively. We isolated 18 probable blue straggler candidates. They are more centrally concentrated than the lower red giants of comparable brightness at the 97.9 % level.



rate research

Read More

93 - Alessia Moretti 2002
We present preliminary results of a wide field study of the globular cluster system of NGC4594, the Sombrero galaxy. The galaxy was observed in B, V, and R using the Wide Field Imager on the ESO 2.2m telescope. Using color and shape criteria to select a sample of highly probable globular cluster candidates, we measured the radial density profile of clusters out to 40 (100 Kpc) in the galaxy halo. The colors are consistent with the bimodal color distribution observed in previous studies. The red cluster candidates show a clear central concentration relative to the blue clusters. The population of red clusters does not appear significantly flattened, thus indicating that they are associated to the galaxy bulge rather than to the disk.
Globular Clusters (GCs) are now well known to almost universally show multiple popu-lations (MPs). The HST UV Legacy Survey of a large number of Galactic GCs in UV filters optimized to explore MPs finds that a small fraction of GCs, termed Type II, also display more complex, anomalous behavior. Several well-studied Type II GCs show intrinsic Fe abundance variations, suggesting that the other, less well-studied, Type II GCs should also exhibit similar behavior. Our aim is to perform the first detailed metallicity analysis of NGC 1261, an intermediate mass Type II GC, in order to determine if this object shows an intrinsic Fe variation. We determined the Fe abundance in eight red giant members using Magellan-MIKE and UVES-FLAMES high-resolution, high S/N spectroscopy. The full range of [Fe/H] for the entire sample from the spectra is from -1.05 to -1.43 dexwith an observed spread sigma_obs=0.133 dex. Compared with the total internal error of Sigma_tot=0.06,this indicates a significant intrinsic metallicity spread of Sigma_int=0.119 dex. We found a very similar variation in [Fe/H] using an independent method to derive the atmospheric parameters based on near-IR photometry. More importantly, the mean metallicity of the five presumed normal metallicity stars is -1.37+/-0.02, while that of the three presumed anomalous/highmetallicity stars is -1.18+/-0.09. This difference is significant at the $pm$2.4Sigma level. We find indications from existing data of other Type II GCs that several of them presumedto have real metallicity spreads may in fact posses none. The minimum mass required for a GC to acquire an intrinsic Fe spread appears to be $pm$10^5 Msun. We find no strong correlation betwee nmass and metallicity variation for Type II GCs. The metallicity spread is also independent of the fraction of anomalous stars within the Type II GCs and of GC origin.
We present the results obtained from the UV photometry of the globular cluster NGC 1261 using Far-UV (FUV) and Near-UV (NUV) images acquired with the Ultraviolet Imaging Telescope (UVIT) onboard the Astrosat satellite. We utilized the UVIT data combined with HST, GAIA, and ground-based optical photometric data to construct the different UV colour-magnitude diagrams (CMDs). We detected blue HB (BHB), and two extreme HB (EHB) stars in FUV, whereas full HB, i.e., red HB (RHB), BHB as well as EHB is detected in NUV CMDs. The 2 EHB stars, identified in both NUV and FUV, are confirmed members of the cluster. The HB stars form a tight sequence in UV-optical CMDs, which is almost aligned with Padova isochrones. This study sheds light on the significance of UV imaging to probe the HB morphology in GCs.
NGC 2419 is a peculiar Galactic globular cluster in terms of size/luminosity, and chemical abundance anomalies. Here, we present Stromgren $uvby$ photometry of the cluster. Using the gravity- and metallicity-sensitive $c_1$ and $m_1$ indices, we identify a sample of likely cluster members extending well beyond the formal tidal radius with an estimated contamination by non-members of only 1%. We derive photometric [Fe/H] of red giants, and depending on which literature metallicity relation we use, find reasonable to excellent agreement with spectroscopic [Fe/H]. We demonstrate explicitly that the photometric errors are not Gaussian, and using a realistic model for the photometric uncertainties, find a formal internal [Fe/H] spread of $sigma=0.11^{+0.02}_{-0.01}$ dex. This is an upper limit to the clusters true [Fe/H] spread and may partially/entirely reflect the limited precision of the photometric metallicity estimation and systematic effects. The lack of correlation between spectroscopic and photometric [Fe/H] of individual stars is further evidence against a [Fe/H] spread on the 0.1 dex level. Finally, the CN-sensitive $delta_4$ anti-correlates strongly with Mg abundance, indicating that the 2nd generation stars are N-enriched. Absence of similar correlations in some other CN-sensitive indices supports the second generation being He-rich, which in these indices approximately compensates the shift due to CN. Compared to a single continuous distribution with finite dispersion, the observed $delta_4$ distribution is slightly better fit by two discrete populations, with the N-enhanced stars accounting for 53$pm$5%. NGC 2419 appears to be very similar to other metal-poor Galactic globular clusters with a similarly N-enhanced second generation and little or no variation in [Fe/H], which sets it apart from other suspected accreted nuclei such as {omega}Cen. (abridged)
A detailed imaging analysis of the globular cluster (GC) system of the Sombrero galaxy (NGC 4594) has been accomplished using a six-image mosaic from the Hubble Space Telescope Advanced Camera for Surveys. The quality of the data is such that contamination by foreground stars and background galaxies is negligible for all but the faintest 5% of the GC luminosity function (GCLF). This enables the study of an effectively pure sample of 659 GCs until ~2 mags fainter than the turnover magnitude, which occurs at M_V=-7.60+/-0.06 for an assumed m-M=29.77. Two GC metallicity subpopulations are easily distinguishable, with the metal-poor subpopulation exhibiting a smaller intrinsic dispersion in color compared to the metal-rich subpopulation. Three new discoveries include: (1) A metal-poor GC color-magnitude trend. (2) Confirmation that the metal-rich GCs are ~17% smaller than the metal-poor ones for small projected galactocentric radii (less than ~2 arcmin). However, the median half-light radii of the two subpopulations become identical at ~3 arcmin from the center. This is most easily explained if the size difference is the result of projection effects. (3) The brightest (M_V < -9.0) members of the GC system show a size-magnitude upturn where the average GC size increases with increasing luminosity. Evidence is presented that supports an intrinsic origin for this feature rather than a being result from accreted dwarf elliptical nuclei. In addition, the metal-rich GCs show a shallower positive size-magnitude trend, similar to what is found in previous studies of young star clusters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا