Do you want to publish a course? Click here

J/psi production in proton-nucleus collisions at 158 and 400 GeV

209   0   0.0 ( 0 )
 Added by Enrico Scomparin
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

The NA60 experiment has studied J/psi production in p-A collisions at 158 and 400 GeV, at the CERN SPS. Nuclear effects on the J/psi yield have been estimated from the A-dependence of the production cross section ratios sigma_{J/psi}^{A}/sigma_{J/psi}^{Be} (A=Al, Cu, In, W, Pb, U). We observe a significant nuclear suppression of the J/psi yield per nucleon-nucleon collision, with a larger effect at lower incident energy, and we compare this result with previous observations by other fixed-target experiments. An attempt to disentangle the different contributions to the observed suppression has been carried out by studying the dependence of nuclear effects on x_2, the fraction of nucleon momentum carried by the interacting parton in the target nucleus.



rate research

Read More

The NA60 experiment studies muon pair production at the CERN SPS. In this letter we report on a precision measurement of J/psi in In-In collisions. We have studied the J/psi centrality distribution, and we have compared it with the one expected if absorption in cold nuclear matter were the only active suppression mechanism. For collisions involving more than ~80 participant nucleons, we find that an extra suppression is present. This result is in qualitative agreement with previous Pb-Pb measurements by the NA50 experiment, but no theoretical explanation is presently able to coherently describe both results.
The NA60 experiment has studied J/$psi$ production in Indium-Indium collisions at 158 A$cdot$GeV. In this paper we present an updated set of results obtained with the complete set of available statistics and an improved alignment of the vertex tracker. The centrality dependence of the J/$psi$ production, obtained with an analysis technique based only on the J/$psi$ sample, indicates that a suppression beyond that induced by nuclear absorption is present in In-In collisions, setting in at $sim$80 participant nucleons. A first study of the systematic errors related with this measurement is discussed. We also present preliminary results on the J/$psi$ azimuthal distributions.
Measured J/Psi production cross sections for 200 and 450 GeV/c protons incident on a variety of nuclear targets are analyzed within a Glauber framework which takes into account energy loss of the beam proton, the time delay of particle production due to quantum coherence, and absorption of the J/Psi on nucleons. The best representation is obtained for a coherence time of 0.5 fm/c, previously determined by Drell-Yan production in proton-nucleus collisions, and an absorption cross section of 3.6 mb, which is consistent with the value deduced from photoproduction of the J/Psi on nuclear targets.
The production of non-phi K+K- pairs by protons of 2.83 GeV kinetic energy on C, Cu, Ag, and Au targets has been investigated using the COSY-ANKE magnetic spectrometer. The K- momentum dependence of the differential cross section has been measured at small angles over the 0.2--0.9 GeV/c range. The comparison of the data with detailed model calculations indicates an attractive K- -nucleus potential of about -60 MeV at normal nuclear matter density at a mean momentum of 0.5 GeV/c. However, this approach has difficulty in reproducing the smallness of the observed cross sections at low K- momenta.
209 - U. Acharya , A. Adare , C. Aidala 2020
The PHENIX experiment has measured the spin alignment for inclusive $J/psirightarrow e^{+}e^{-}$ decays in $p$+$p$ collisions at $sqrt{s}=510$ GeV at midrapidity. The angular distributions have been measured in three different polarization frames, and the three decay angular coefficients have been extracted in a full two-dimensional analysis. Previously, PHENIX saw large longitudinal net polarization at forward rapidity at the same collision energy. This analysis at midrapidity, complementary to the previous PHENIX results, sees no sizable polarization in the measured transverse momentum range of $0.0<p_T<10.0$ GeV/$c$. The results are consistent with a previous one-dimensional analysis at midrapidity at $sqrt{s}=200$ GeV. The transverse-momentum-dependent cross section for midrapidity $J/psi$ production has additionally been measured, and after comparison to world data we find a simple logarithmic dependence of the cross section on $sqrt{s}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا