Do you want to publish a course? Click here

Control and Tomography of a Three Level Superconducting Artificial Atom

156   0   0.0 ( 0 )
 Added by Romeo Bianchetti
 Publication date 2010
  fields Physics
and research's language is English
 Authors R.Bianchetti




Ask ChatGPT about the research

A number of superconducting qubits, such as the transmon or the phase qubit, have an energy level structure with small anharmonicity. This allows for convenient access of higher excited states with similar frequencies. However, special care has to be taken to avoid unwanted higher-level populations when using short control pulses. Here we demonstrate the preparation of arbitrary three-level superposition states using optimal control techniques in a transmon. Performing dispersive read-out we extract the populations of all three levels of the qutrit and study the coherence of its excited states. Finally we demonstrate full quantum state tomography of the prepared qutrit states and evaluate the fidelities of a set of states, finding on average 96%.



rate research

Read More

We report coherent frequency conversion in the gigahertz range via three-wave mixing on a single artificial atom in open space. All frequencies involved are in vicinity of transition frequencies of the three-level atom. A cyclic configuration of levels is therefore essential, which we have realised with an artificial atom based on the flux qubit geometry. The atom is continuously driven at two transition frequencies and we directly measure the coherent emission at the sum or difference frequency. Our approach enables coherent conversion of the incoming fields into the coherent emission at a designed frequency in prospective devices of quantum electronics.
A single superconducting artificial atom provides a unique basis for coupling electromagnetic fields and photons hardly achieved with a natural atom. Bringing a pair of harmonic oscillators into resonance with transitions of the three-level atom converts atomic spontaneous processes into correlated emission dynamics. We demonstrate two-mode correlated emission lasing on harmonic oscillators coupled via the fully controllable three-level artificial atom. Correlation of two different color emissions reveals itself as equally narrowed linewiths and quench of their mutual phase-diffusion. The mutual linewidth is more than four orders of magnitude narrower than the Schawlow-Townes limit. The interference between the different color lasing fields demonstrates the two-mode fields are strongly correlated.
Advanced control in Lambda ($Lambda$) scheme of a solid state architecture of artificial atoms and quantized modes would allow the translation to the solid-state realm of a whole class of phenomena from quantum optics, thus exploiting new physics emerging in larger integrated quantum networks and for stronger couplings. However control solid-state devices has constraints coming from selection rules, due to symmetries which on the other hand yield protection from decoherence, and from design issues, for instance that coupling to microwave cavities is not directly switchable. We present two new schemes for the $Lambda$-STIRAP control problem with the constraint of one or two classical driving fields being always-on. We show how these protocols are converted to apply to circuit-QED architectures. We finally illustrate an application to coherent spectroscopy of the so called ultrastrong atom-cavity coupling regime.
118 - Qi-Kai He , D. L. Zhou 2018
Coherent manipulation of a quantum system is one of the main themes in current physics researches. In this work, we design a circuit QED system with a tunable coupling between an artificial atom and a superconducting resonator while keeping the cavity frequency and the atomic frequency invariant. By controlling the time dependence of the external magnetic flux, we show that it is possible to tune the interaction from the extremely weak coupling regime to the ultrastrong coupling one. Using the quantum perturbation theory, we obtain the coupling strength as a function of the external magnetic flux. In order to show its reliability in the fields of quantum simulation and quantum computing, we study its sensitivity to noises.
We propose a method for the dynamical control in three-level open systems and realize it in the experiment with a superconducting qutrit. Our work demonstrates that in the Markovian environment for a relatively long time (3 us), the systemic populations or coherence can still strictly follow the preset evolution paths. This is the first experiment for precisely controlling the Markovian dynamics of three-level open systems, providing a solid foundation for the future realization of dynamical control in multiple open systems. An instant application of the techniques demonstrated in this experiment is to stabilize the energy of quantum batteries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا