Positive isotopies of Legendrian submanifolds and applications


Abstract in English

We show that there is no positive loop inside the component of a fiber in the space of Legendrian embeddings in the contact manifold $ST^*M$, provided that the universal cover of $M$ is $RM^n$. We consider some related results in the space of one-jets of functions on a compact manifold. We give an application to the positive isotopies in homogeneous neighborhoods of surfaces in a tight contact 3-manifold.

Download