We propose a model to analyze the insurgence of pull-in and wrinkling failures in electroactive thin films. We take in consideration both cases of voltage and charge control, and study the role of prestretch and size of activated regions, which are essential in the analysis of realistic applications of EAPs. Based on simple geometrical and material assumptions we deduce an explicit analytical description of these phenomena, allowing a clear physical interpretation. Despite our simplifying assumptions, the comparison with experiments shows a satisfying qualitative and, interestingly, quantitative agreement. In particular our model shows, in accordance with experiments, the existence of different optimal prestretch values, depending on the choice of the actuating parameter of the EAP.