Do you want to publish a course? Click here

Coherent state quantization of paragrassmann algebras

87   0   0.0 ( 0 )
 Added by Rodrigo Fresneda
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

By using a coherent state quantization of paragrassmann variables, operators are constructed in finite Hilbert spaces. We thus obtain in a straightforward way a matrix representation of the paragrassmann algebra. This algebra of finite matrices realizes a deformed Weyl-Heisenberg algebra. The study of mean values in coherent states of some of these operators lead to interesting conclusions.



rate research

Read More

We study truncated Bose operators in finite dimensional Hilbert spaces. Spin coherent states for the truncated Bose operators and canonical coherent states for Bose operators are compared. The Lie algebra structure and the spectrum of the truncated Bose operators are discussed.
We investigate the consistency of coherent state (or Berezin-Klauder-Toeplitz, or anti-Wick) quantization in regard to physical observations in the non- relativistic (or Galilean) regime. We compare this procedure with the canonical quantization (on both mathematical and physical levels) and examine whether they are or not equivalent in their predictions: is it possible to dif- ferentiate them on a strictly physical level? As far as only usual dynamical observables (position, momentum, energy, ...) are concerned, the quantization through coherent states is proved to be a perfectly valid alternative. We successfully put to the test the validity of CS quantization in the case of data obtained from vibrational spectroscopy (data that allowed to validate canonical quantization in the early period of Quantum Mechanics).
177 - M.C. Baldiotti , R. Fresneda , 2010
We return to the description of the damped harmonic oscillator by means of a closed quantum theory with a general assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model recently proposed by one of the authors. We show the local equivalence between the two models and argue that latter has better high energy behavior and is naturally connected to existing open-quantum-systems approaches.
Covariant affine integral quantization of the half-plane is studied and applied to the motion of a particle on the half-line. We examine the consequences of different quantizer operators built from weight functions on the half-plane. To illustrate the procedure, we examine two particular choices of the weight function, yielding thermal density operators and affine inversion respectively. The former gives rise to a temperature-dependent probability distribution on the half-plane whereas the later yields the usual canonical quantization and a quasi-probability distribution (affine Wigner function) which is real, marginal in both momentum p and position q.
In this paper, we study the analytic continuation to complex time of the Hamiltonian flow of certain $Gtimes T$-invariant functions on the cotangent bundle of a compact connected Lie group $G$ with maximal torus $T$. Namely, we will take the Hamiltonian flows of one $Gtimes G$-invariant function, $h$, and one $Gtimes T$-invariant function, $f$. Acting with these complex time Hamiltonian flows on $Gtimes G$-invariant Kahler structures gives new $Gtimes T$-invariant, but not $Gtimes G$-invariant, Kahler structures on $T^*G$. We study the Hilbert spaces ${mathcal H}_{tau,sigma}$ corresponding to the quantization of $T^*G$ with respect to these non-invariant Kahler structures. On the other hand, by taking the vertical Schrodinger polarization as a starting point, the above $Gtimes T$-invariant Hamiltonian flows also generate families of mixed polarizations $mathcal{P}_{0,sigma}, sigma in {mathbb C}, {rm Im}(sigma) >0$. Each of these mixed polarizations is globally given by a direct sum of an integrable real distribution and of a complex distribution that defines a Kahler structure on the leaves of a foliation of $T^*G$. The geometric quantization of $T^*G$ with respect to these mixed polarizations gives rise to unitary partial coherent state transforms, corresponding to KSH maps as defined in [KMN1,KMN2].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا