Suppression of off-resonant cavity feeding through quasi-resonant pumping in a strongly coupled cavity-quantum dot system


Abstract in English

We compare the photoluminescence spectrum of an indium arsenide (InAs) quantum dot (QD) that is strongly coupled to a photonic crystal cavity under above band excitation (ABE) and quasi-resonant excitation (QRE). We show that off-resonant cavity feeding, which manifests itself in a bare cavity emission peak at the strong coupling point, is suppressed by as much as 40% under QRE relative to ABE. We attribute this suppression to a reduced probability of QD charging because electrons and holes are created in pairs inside the QD. We investigate the pump power dependence of the cavity feeding and show that, below saturation, the ratio of the bare cavity emission to polariton emission for ABE is independent of pump power, while for QRE there is linear pump power dependence. These results suggest that the biexciton plays an important role in cavity feeding for QRE.

Download