Do you want to publish a course? Click here

Exploring the String Axiverse with Precision Black Hole Physics

156   0   0.0 ( 0 )
 Added by Asimina Arvanitaki
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has recently been suggested that the presence of a plenitude of light axions, an Axiverse, is evidence for the extra dimensions of string theory. We discuss the observational consequences of these axions on astrophysical black holes through the Penrose superradiance process. When an axion Compton wavelength is comparable to the size of a black hole, the axion binds to the black hole nucleus forming a gravitational atom in the sky. The occupation number of superradiant atomic levels, fed by the energy and angular momentum of the black hole, grows exponentially. The black hole spins down and an axion Bose-Einstein condensate cloud forms around it. When the attractive axion self-interactions become stronger than the gravitational binding energy, the axion cloud collapses, a phenomenon known in condensed matter physics as Bosenova. The existence of axions is first diagnosed by gaps in the mass vs spin plot of astrophysical black holes. For young black holes the allowed values of spin are quantized, giving rise to Regge trajectories inside the gap region. The axion cloud can also be observed directly either through precision mapping of the near horizon geometry or through gravitational waves coming from the Bosenova explosion, as well as axion transitions and annihilations in the gravitational atom. Our estimates suggest that these signals are detectable in upcoming experiments, such as Advanced LIGO, AGIS, and LISA. Current black hole spin measurements imply an upper bound on the QCD axion decay constant of 2 x 10^17 GeV, while Advanced LIGO can detect signals from a QCD axion cloud with a decay constant as low as the GUT scale. We finally discuss the possibility of observing the gamma-rays associated with the Bosenova explosion and, perhaps, the radio waves from axion-to-photon conversion for the QCD axion.



rate research

Read More

String theory/M-theory generally predicts that axionic fields with a broad mass spectrum extending below 10^{-10}eV are produced after compactification to four dimensions. These axions/fields provoke a rich variety of cosmophysical phenomena on different scales depending on their masses and provide us new windows to probe the ultimate theory. In this article, after overviewing this axiverse idea, I take up the black hole instability as the most fascinating one among such axionic phenomena and explain its physical mechanism and astrophysical predictions.
It is widely believed that axions are ubiquitous in string theory and could be the dark matter. The peculiar features of the axion dark matter are coherent oscillations and a coupling to the electromagnetic field through the Chern-Simons term. In this paper, we study consequences of these two features of the axion with the mass in a range from $10^{-13},{rm eV}$ to $10^{3},{rm eV}$. First, we study the parametric resonance of electromagnetic waves induced by the coherent oscillation of the axion. As a result of the resonance, the amplitude of the electromagnetic waves is enhanced and the circularly polarized monochromatic waves will be generated. Second, we study the velocity of light in the background of the axion dark matter. In the presence of the Chern-Simons term, the dispersion relation is modified and the speed of light will oscillate in time. It turns out that the change of speed of light would be difficult to observe. We argue that the future radio wave observations of the resonance can give rise to a stronger constraint on the coupling constant and/or the density of the axion dark matter.
375 - Hassan Firouzjahi 2016
We speculate that the early Universe was inside a primordial black hole. The interior of the the black hole is a dS background and the two spacetimes are separated on the surface of black holes event horizon. We argue that this picture provides a natural realization of inflation without invoking the inflaton field. The black hole evaporation by Hawking radiation provides a natural mechanism for terminating inflation so reheating and the hot big bang cosmology starts from the evaporation of black hole to relativistic particles. The quantum gravitational fluctuations at the boundary of black hole generate the nearly scale invariant scalar and tensor perturbations with the ratio of tensor to scalar power spectra at the order of $10^{-3}$. As the black hole evaporates, the radius of its event horizon shrinks and the Hubble expansion rate during inflation increases slowly so the quantum Hawking radiation provides a novel mechanism for the violation of null energy condition in cosmology.
We propose a construction with which to resolve the black hole singularity and enable an anisotropic cosmology to emerge from the inside of the hole. The model relies on the addition of an S-brane to the effective action which describes the geometry of space-time. This space-like defect is located inside of the horizon on a surface where the Weyl curvature reaches a limiting value. We study how metric fluctuations evolve from the outside of the black hole to the beginning of the cosmological phase to the future of the S-brane. Our setup addresses i) the black hole singularity problem, ii) the cosmological singularity problem and iii) the information loss paradox since the outgoing Hawking radiation is entangled with the state inside the black hole which becomes the new universe.
Systems of enhanced memory capacity are subjected to a universal effect of memory burden, which suppresses their decay. In this paper, we study a prototype model to show that memory burden can be overcome by rewriting stored quantum information from one set of degrees of freedom to another one. However, due to a suppressed rate of rewriting, the evolution becomes extremely slow compared to the initial stage. Applied to black holes, this predicts a metamorphosis, including a drastic deviation from Hawking evaporation, at the latest after losing half of the mass. This raises a tantalizing question about the fate of a black hole. As two likely options, it can either become extremely long lived or decay via a new classical instability into gravitational lumps. The first option would open up a new window for small primordial black holes as viable dark matter candidates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا