No Arabic abstract
We make a detailed investigation of the properties of Lyman-break galaxies (LBGs) in the LambdaCDM model. We present predictions for two published variants of the GALFORM semi-analytical model: the Baugh et al. (2005) model, which has star formation at high redshifts dominated by merger-driven starbursts with a top-heavy IMF, and the Bower et al. (2006) model, which has AGN feedback and a standard Solar neighbourhood IMF throughout. We show predictions for the evolution of the rest-frame far-UV luminosity function in the redshift range z=3-20, and compare with the observed luminosity functions of LBGs at z=3-10. We find that the Baugh et al. model is in excellent agreement with these observations, while the Bower et al. model predicts too many high-luminosity LBGs. Dust extinction, which is predicted self-consistently based on galaxy gas contents, metallicities and sizes, is found to have a large effect on LBG luminosities. We compare predictions for the size evolution of LBGs at different luminosities with observational data for 2<z<7, and find the Baugh et al. model to be in good agreement. We present predictions for stellar, halo and gas masses, star formation rates, circular velocities, bulge-to-disk ratios, gas and stellar metallicities and clustering bias, as functions of far-UV luminosity and redshift. We find broad consistency with current observational constraints. We then present predictions for the abundance and angular sizes of LBGs out to very high redshift (z<20), finding that planned deep surveys with JWST should detect objects out to z<15. The typical UV luminosities of galaxies are predicted to be very low at high redshifts, which has implications for detecting the galaxies responsible for reionizing the IGM; for example, at z=10, 50% of the ionizing photons are expected to be produced by galaxies fainter than M_AB(1500A)-5logh ~ -15.
We present the results of a photometric and spectroscopic survey of 321 Lyman break galaxies (LBGs) at z ~ 3 to investigate systematically the relationship between Lya emission and stellar populations. Lya equivalent widths (EW) were calculated from rest-frame UV spectroscopy and optical/near-infrared/Spitzer photometry was used in population synthesis modeling to derive the key properties of age, dust extinction, star formation rate (SFR), and stellar mass. We directly compare the stellar populations of LBGs with and without strong Lya emission, where we designate the former group (EW > 20 AA) as Lya emitters (LAEs) and the latter group (EW < 20 AA) as non-LAEs. This controlled method of comparing objects from the same UV luminosity distribution represents an improvement over previous studies in which the stellar populations of LBGs and narrowband-selected LAEs were contrasted, where the latter were often intrinsically fainter in broadband filters by an order of magnitude simply due to different selection criteria. Using a variety of statistical tests, we find that Lya equivalent width and age, SFR, and dust extinction, respectively, are significantly correlated in the sense that objects with strong Lya emission also tend to be older, lower in star formation rate, and less dusty than objects with weak Lya emission, or the line in absorption. We accordingly conclude that, within the LBG sample, objects with strong Lya emission represent a later stage of galaxy evolution in which supernovae-induced outflows have reduced the dust covering fraction. We also examined the hypothesis that the attenuation of Lya photons is lower than that of the continuum, as proposed by some, but found no evidence to support this picture.
We present first results of a study of the submillimetre (rest frame far-infrared) properties of z~3 Lyman Break Galaxies (LBGs) and their lower-redshift counterparts BX/BM galaxies, based on Herschel-SPIRE observations of the Northern field of the Great Observatories Origins Deep Survey (GOODS-N). We use stacking analysis to determine the properties of LBGs well below the current limit of the survey. Although LBGs are not detected individually, stacking the infrared luminous LBGs (those detected with Spitzer at 24 microns yields a statistically significant submm detection with mean flux <S_{250}>= 5.9+/-1.4 mJy confirming the power of SPIRE in detecting UV-selected high-redshift galaxies at submillimetre wavelengths. In comparison, the Spitzer 24 microns detected BX/BM galaxies appear fainter with a stacked value of <S_{250}> = 2.7 +/-0.8 mJy. By fitting the Spectral Energy Distributions (SEDs) we derive median infrared luminosities, L_{IR}, of 2.8x10^{12} Lsun and 1.5x10^{11} Lsun for z~3 LBGs and BX/BMs, respectively. We find that $L_{IR} estimates derived from present measurements are in good agreement with those based on UV data for z~2 BX/BM galaxies, unlike the case for z~3 infrared luminous LBGs where the UV underestimates the true $L_{IR}. Although sample selection effects may influence this result we suggest that differences in physical properties (such as morphologies, dust distribution and extent of star-forming regions) between z ~3 LBGs and z~2 BX/BMs may also play a significant role.
We predict the formation histories, properties and descendants of Lyman-break galaxies (LBGs) in the Lambda-CDM cosmology. In our model, which incorporates a top-heavy IMF in starbursts, we find that most LBGs are starbursts triggered by minor mergers of galaxies. The duration of the LBG phase is predicted to be quite short, ~20-60 Myr. We investigate the distributions of stellar and halo masses and morphologies for bright (L_UV > L*_UV) and faint (L_UV > 0.1 L*_UV) LBGs at z=3, z=6 and z=10 (where we classify LBGs according to their rest-frame UV luminosities relative the observed characteristic luminosity L*_UV at z approx 3). Bright LBGs at z=3 are predicted to have median stellar masses ~ 1x10^9 Msun/h and host halo masses ~ 3x10^{11} Msun/h, and to be typically mildly disk-dominated in stellar mass. On the other hand, faint LBGs at z=10 are predicted to have median stellar masses of only ~ 1x10^7 Msun/h and host halo masses 2x10^{10} Msun/h, and to be generally bulge-dominated. Bright LBGs at z=3 evolve to present-day galaxies with median stellar mass ~ 5x^{10} Msun/h (comparable to the Milky Way), consisting of roughly equal numbers of disk- and bulge-dominated systems, and hosted by halos with median mass ~2x10^{13} Msun/h (corresponding to medium-size galaxy groups). The model predicts that 40% of Milky Way mass galaxies at the present-day have a bright LBG progenitor in the redshift range 3<z<4, while 95% have a faint LBG progenitor in the same redshift range, and 7% have a faint LBG progenitor at 10<z<11. With our multiwavelength model, we also investigate the overlap between the LBG population and that of submillimetre selected galaxies (SMGs); at z=3, only ~1% of bright LBGs are also predicted to also be bright SMGs (with an 850 mum flux in excess of 5 mJy).
Using GALFORM, a semi-analytical model of galaxy formation in the Lambda cold dark matter cosmology, we study the rest-frame ultraviolet (UV) colours of Lyman-break galaxies (LBGs) in the redshift range 2.5 < z < 10. As the impact of dust on UV luminosity can be dramatic, our model includes a self-consistent computation of dust attenuation based on a radiative transfer model. We find that intrinsically brighter galaxies suffer stronger dust attenuation than fainter ones, though the relation has a large scatter. The model predicts galaxies with UV colours consistent with the colour selection regions designed to select LBGs in observational surveys. We find that the drop-out technique that selects LBGs based on two rest-frame UV colours is robust and effective, selecting more than 70 per cent of UV bright galaxies at a given redshift. We investigate the impact on the predicted UV colours of varying selected model parameters. We find that the UV colours are most sensitive to the modelling of dust attenuation and in particular, to the extinction curve used in the radiative transfer calculation. If we assume a Milky Way dust extinction curve, the predicted UV continuum slopes are, in general, bluer than observed. However, we find that the opposite is true when using the Small Magellanic Cloud dust extinction curve. This demonstrates the strong dependence of UV colours on dust properties and highlights the inadequacy of using the UV continuum slope as a tracer of dust attenuation without any further knowledge of the galaxy inclination or dust characteristics in high redshift galaxies.
For the first time, we study the evolution of the stellar mass-size relation for star-forming galaxies from z ~ 4 to z ~ 7 from Hubble-WFC3/IR camera observations of the HUDF and Early Release Science (ERS) field. The sizes are measured by determining the best fit model to galaxy images in the rest-frame 2100 AA with the stellar masses estimated from SED fitting to rest-frame optical (from Spitzer/IRAC) and UV fluxes. We show that the stellar mass-size relation of Lyman-break galaxies (LBGs) persists, at least to z ~ 5, and the median size of LBGs at a given stellar mass increases towards lower redshifts. For galaxies with stellar masses of 9.5<Log(M*/Msun)<10.4 sizes evolve as $(1+z)^{-1.20pm0.11}$. This evolution is very similar for galaxies with lower stellar masses of 8.6<Log(M*/Msun)<9.5 which is $r_{e} propto (1+z)^{-1.18pm0.10}$, in agreement with simple theoretical galaxy formation models at high z. Our results are consistent with previous measurements of the LBGs mass-size relation at lower redshifts (z ~ 1-3).