Do you want to publish a course? Click here

The Buried Starburst in the Interacting Galaxy II Zw 096 as Revealed by the Spitzer Space Telescope

109   0   0.0 ( 0 )
 Added by Hanae Inami
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

An analysis of data from the Spitzer Space Telescope, Hubble Space Telescope, Chandra X-ray Observatory, and AKARI Infrared Astronomy Satellite is presented for the z=0.036 merging galaxy system II Zw 096 (CGCG 448-020). Because II Zw 096 has an infrared luminosity of log(L_IR/L_sun) = 11.94, it is classified as a Luminous Infrared Galaxy (LIRG), and was observed as part of the Great Observatories All-sky LIRG Survey (GOALS). The Spitzer data suggest that 80% of the total infrared luminosity comes from an extremely compact, red source not associated with the nuclei of the merging galaxies. The Spitzer mid-infrared spectra indicate no high-ionization lines from a buried active galactic nucleus in this source. The strong detection of the 3.3 micron and 6.2 micron PAH emission features in the AKARI and Spitzer spectra also implies that the energy source of II Zw 096 is a starburst. Based on Spitzer infrared imaging and AKARI near-infrared spectroscopy, the star formation rate is estimated to be 120 M_sun/yr and > 45 M_sun/yr, respectively. Finally, the high-resolution B, I, and H-band images show many star clusters in the interacting system. The colors of these clusters suggest at least two populations - one with an age of 1-5 Myr and one with an age of 20-500 Myr, reddened by 0-2 magnitudes of visual extinction. The masses of these clusters span a range between 10^6-10^8 M_sun. This starburst source is reminiscent of the extra-nuclear starburst seen in NGC 4038/9 (the Antennae Galaxies) and Arp 299 but approximately an order of magnitude more luminous than the Antennae. The source is remarkable in that the off-nuclear infrared luminosity dominates the enitre system.



rate research

Read More

We present a study of the kinematic properties of the ionized gas in the dominant giant HII region of the well known HII galaxy: II Zw 40. High spatial and spectral resolution spectroscopy has been obtained using IFU mode on the GMOS instrument at Gemini-North telescope. We have used a set of kinematics diagnostic diagrams, such as the intensity vs. velocity dispersion intensity vs. radial velocity, for global and individual analysis in sub-regions of the nebula. We aim to separate the main line broadening mechanisms responsible for producing a smooth supersonic integrated line profile for the giant HII region. The brightest central region (R ~ 50 pc) is responsible for sigma derived from a single fit to the integrated line profile. The dominant action of gravity, and possibly unresolved winds of young (<10 Myr) massive stars, in this small region should be responsible for the characteristic Halpha velocity profile of the starburst region as a whole. Our observations show that the complex structure of the interstellar medium of this galactic scale star-forming region is very similar to that of nearby extragalactic giant HII regions in the Local Group galaxies.
480 - Mark Lacy 2020
The Spitzer Space Telescope revolutionized studies of Active Galactic Nuclei (AGNs). Its combined sensitivity and mapping speed at mid-infrared wavelengths revealed a substantial population of highly-obscured AGNs. This population implies a higher radiative accretion efficiency, and thus possibly a higher spin for black holes than indicated by surveys in the optical and X-ray. The unique mid-infrared spectrographic capability of Spitzer gave important insights into the distribution and nature of the dust surrounding AGNs, enabling the separation of AGN and starburst components, the detection of silicate features in emission from hot dust, and the identification of shocked gas associated with AGN activity. The sensitivity of Spitzer allowed almost complete identification of the host galaxies of samples of AGNs selected in the X-ray and radio. As we look forward to the James Webb Space Telescope, the lessons learned from Spitzer studies will inform observational programs with new and upcoming infrared facilities.
In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty, starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift 2 distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimeters, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetrewave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.
(Abridged) In this second paper of the series, we present the results from optical Gemini-North GMOS-IFU and WIYN DensePak IFU spectroscopic observations of the starburst and inner wind zones of M82, with a focus on the state of the T~10^4 K ionized interstellar medium. Our electron density maps show peaks of a few 1000 cm-3, local small spatial-scale variations, and a fall-off in the minor axis direction. We discuss the implications of these results with regards to the conditions/locations that may favour the escape of individual cluster winds. Our findings imply that the starburst environment is highly fragmented into a range of clouds from small/dense clumps with low filling factors (<1pc, n_e>10^4 cm-3) to larger filling factor, less dense gas. The near-constant state of the ionization state of the ~10^4 K gas throughout the starburst can be explained as a consequence of the small cloud sizes, which allow the gas conditions to respond quickly to any changes. We have examined in more detail both the broad (FWHM 150-350 km/s) line component found in Paper I that we associated with emission from turbulent mixing layers on the gas clouds, and the discrete outflow channel identified within the inner wind. The channel appears as a coherent, expanding cylindrical structure of length >120 pc and and width 35-50 pc and the walls maintain an approximately constant (but subsonic) expansion velocity of ~60 km/s. We use the channel to examine further the relationship between the narrow and broad component emitting gas within the inner wind. Within the starburst energy injection zone, we find that turbulent motions (as traced by the broad component) appear to play an increasing role with height.
We present the UV photometry of the globular cluster NGC 1851 using images acquired with the Ultra-violet Imaging Telescope (UVIT) onboard the ASTROSAT satellite. PSF-fitting photometric data derived from images in two far-UV (FUV) filters and one near-UV (NUV) filter are used to construct color-magnitude diagrams (CMD), in combination with HST and ground-based optical photometry. In the FUV, we detect only the bluest part of the cluster horizontal branch (HB); in the NUV, we detect the full extent of the HB, including the red HB, blue HB and a small number of RR Lyrae stars. UV variability was detected in 18 RR Lyrae stars, and 3 new variables were also detected in the central region. The UV/optical CMDs are then compared with isochrones of different age and metallicity (generated using Padova and BaSTI models) and synthetic HB (using helium enhanced $Y^2$ models). We are able to identify two populations among the HB stars, which are found to have either an age range of 10-12~Gyr, or a range in Y$_{ini}$ of 0.23 - 0.28, for a metallicity of [Fe/H] =$-$1.2 to $-$1.3. These estimations from the UV CMDs are consistent with those from optical studies. The almost complete sample of the HB stars tend to show a marginal difference in spatial/azimuthal distribution among the blue and red HB stars. This study thus show cases the capability of UVIT, with its excellent resolution and large field of view, to study the hot stellar population in Galactic globular clusters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا