No Arabic abstract
(Note: this is a shortened version of the original A&A-style structured abstract). The physical nature of the strong photometric variability of T Tau Sa, the more massive member of the Southern infrared companion to T Tau, has long been debated. Intrinsic luminosity variations due to variable accretion were originally proposed but later challenged in favor of apparent fluctuations due to time-variable foreground extinction. In this paper we use the timescale of the variability as a diagnostic for the underlying physical mechanism. Because the IR emission emerging from Sa is dominantly thermal emission from circumstellar dust at <=1500K, we can derive a minimum size of the region responsible for the time-variable emission. In the context of the variable foreground extinction scenario, this region must be (un-) covered within the variability timescale, which implies a minimum velocity for the obscuring foreground material. If this velocity supercedes the local Kepler velocity we can reject foreground extinction as a valid variability mechanism. The variable accretion scenario allows for shorter variability timescales since the variations in luminosity occur on much smaller scales, essentially at the surface of the star, and the disk surface can react almost instantly on the changing irradiation with a higher or lower dust temperature and according brightness. We have detected substantial variations at long wavelengths in T Tau S: +26% within four days at 12.8 micron. We show that this short-term variability cannot be due to variable extinction and instead must be due to variable accretion. Using a radiative transfer model of the Sa disk we show that variable accretion can in principle also account for the much larger (several magnitude) variations observed on timescales of several years. For the long-term variability, however, also variable foreground extinction is a viable mechanism.
We present angularly resolved spectra of T Tau North and South in the 3 micron water ice feature and K-band. Most of the water ice absorption lies along the line of sight toward T Tau South, confirming that it is viewed through stronger extinction. A decrease in ice-band absorption toward T Tau S between December 1998 and January 2000, significant at the 2 sigma level, was associated with an increase in its near infrared flux. Br gamma emission is detected in T Tau North and South and H_{2} (2.12 micron) emission only toward T Tau South, consistent with previous studies of infrared companions to T Tauri stars. Our results suggest that the near IR variability of T Tau S is probably caused by both variations in accretion rate and variable extinction along the line of sight.
Solar magnetic activity shows both smooth secular changes, such as the Grand Modern Maximum, and quite abrupt drops that are denoted as Grand Minima. Direct numerical simulations (DNS) of convection driven dynamos offer one way of examining the mechanisms behind these events. In this work, we analyze a solution of a solar-like DNS that has been evolved for roughly 80 magnetic cycles of 4.9 years, during which epochs of irregular behavior are detected. The emphasis of our analysis is to find physical causes for such behavior. The DNS employed is a semi-global (wedge) magnetoconvection model. For data analysis we use Ensemble Empirical Mode Decomposition (EEMD) and phase dispersion ($D^2$) methods. A special property of the DNS is the existence of multiple dynamo modes at different depths and latitudes. The dominant mode is solar-like. This mode is accompanied by a higher frequency mode near the surface and a low-frequency mode in the bottom of the convection zone. The overall behavior of the dynamo solution is very complex exhibiting variable cycle lengths, epochs of disturbed and even ceased surface activity, and strong short-term hemispherical asymmetries. Surprisingly, the most prominent suppressed surface activity epoch is actually a global magnetic energy maximum. We interpret the overall irregular behavior to be due to the interplay of the different dynamo modes showing different equatorial symmetries, especially the smoother part of the irregular variations being related to the variations of the mode strengths, evolving with different and variable cycle lengths. The abrupt low activity epoch in the dominant dynamo mode near the surface is related to a strong maximum of the bottom toroidal field strength, which causes abrupt disturbances especially in the differential rotation profile via the suppression of the Reynolds stresses.
Context. Classical T Tauri stars (cTTs) are pre-main sequence stars surrounded by an accretion disk. They host a strong magnetic field, and both magnetospheric accretion and ejection processes develop as the young magnetic star interacts with its disk. Studying this interaction is a major goal toward understanding the properties of young stars and their evolution. Aims. The goal of this study is to investigate the accretion process in the young stellar system HQ Tau, an intermediate-mass T Tauri star (1.9 M$_{odot}$). Methods. The time variability of the system is investigated both photometrically, using Kepler-K2 and complementary light curves, and from a high-resolution spectropolarimetric time series obtained with ESPaDOnS at CFHT. Results. The quasi-sinusoidal Kepler-K2 light curve exhibits a period of 2.424 d, which we ascribe to the rotational period of the star. The radial velocity of the system shows the same periodicity, as expected from the modulation of the photospheric line profiles by surface spots. A similar period is found in the red wing of several emission lines (e.g., HI, CaII, NaI), due to the appearance of inverse P Cygni components, indicative of accretion funnel flows. Signatures of outflows are also seen in the line profiles, some being periodic, others transient. The polarimetric analysis indicates a complex, moderately strong magnetic field which is possibly sufficient to truncate the inner disk close to the corotation radius, r$_{cor}$ $sim$3.5 R$_{star}$. Additionally, we report HQ Tau to be a spectroscopic binary candidate whose orbit remains to be determined. Conclusions. The results of this study expand upon those previously reported for low-mass T Tauri stars, as they indicate that the magnetospheric accretion process may still operate in intermediate-mass pre-main sequence stars, such as HQ Tau.
We introduce our new code, SMERCURY-T, which is based on existing codes SMERCURY (Lissauer et al. 2012) and Mercury-T (Bolmont et al. 2015). The result is a mixed-variable symplectic N-body integrator that can compute the orbital and spin evolution of a planet within a multi-planet system under the influence of tidal spin torques from its star. We validate our implementation by comparing our experimental results to that of a secular model. As we demonstrate in a series of experiments, SMERCURY-T allows for the study of secular spin-orbit resonance crossings and captures for planets within complex multi-planet systems. These processes can drive a planets spin state to evolve along vastly different pathways on its road toward tidal equilibrium, as tidal spin torques dampen the planets spin rate and evolve its obliquity. Additionally, we show the results of a scenario that exemplifies the crossing of a chaotic region that exists as the overlap of two spin-orbit resonances. The test planet experiences violent and chaotic swings in its obliquity until its eventual escape from resonance as it tidally evolves. All of these processes are and have been important over the obliquity evolution of many bodies within the Solar System and beyond, and have implications for planetary climate and habitability. SMERCURY-T is a powerful and versatile tool that allows for further study of these phenomena.
We present spatially resolved ($0.1 - 1.0$) radio maps of Neptune taken from the Very Large Array and Atacama Large Submillimeter/Millimeter Array between $2015-2017$. Combined, these observations probe from just below the main methane cloud deck at $sim 1$ bar down to the NH$_4$SH cloud at $sim50$ bar. Prominent latitudinal variations in the brightness temperature are seen across the disk. Depending on wavelength, the south polar region is $5-40$ K brighter than the mid-latitudes and northern equatorial region. We use radiative transfer modeling coupled to Markov Chain Monte Carlo methods to retrieve H$_2$S, NH$_3$, and CH$_4$ abundance profiles across the disk, though only strong constraints can be made for H$_2$S. Below all cloud formation, the data are well fit by $53.8^{+18.9}_{-13.4}times$ and $3.9^{+2.1}_{-3.1}times$ protosolar enrichment in the H$_2$S and NH$_3$ abundances, respectively, assuming a dry adiabat. Models in which the radio-cold mid-latitudes and northern equatorial region are supersaturated in H$_2$S are statistically favored over models following strict thermochemical equilibrium. H$_2$S is more abundant at the equatorial region than at the poles, indicative of strong, persistent global circulation. Our results imply that Neptunes sulfur-to-nitrogen ratio exceeds unity as H$_2$S is more abundant than NH$_3$ in every retrieval. The absence of NH$_3$ above 50 bar can be explained either by partial dissolution of NH$_3$ in an ionic ocean at GPa pressures or by a planet formation scenario in which hydrated clathrates preferentially delivered sulfur rather than nitrogen onto planetesimals, or a combination of these hypotheses.