Do you want to publish a course? Click here

Escape from attracting sets in randomly perturbed systems

110   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dynamics of escape from an attractive state due to random perturbations is of central interest to many areas in science. Previous studies of escape in chaotic systems have rather focused on the case of unbounded noise, usually assumed to have Gaussian distribution. In this paper, we address the problem of escape induced by bounded noise. We show that the dynamics of escape from an attractors basin is equivalent to that of a closed system with an appropriately chosen hole. Using this equivalence, we show that there is a minimum noise amplitude above which escape takes place, and we derive analytical expressions for the scaling of the escape rate with noise amplitude near the escape transition. We verify our analytical predictions through numerical simulations of a two-dimensional map with noise.



rate research

Read More

Given a dense subset $A$ of the first $n$ positive integers, we provide a short proof showing that for $p=omega(n^{-2/3})$ the so-called {sl randomly perturbed} set $A cup [n]_p$ a.a.s. has the property that any $2$-colouring of it has a monochromatic Schur triple, i.e. a triple of the form $(a,b,a+b)$. This result is optimal since there are dense sets $A$, for which $Acup [n]_p$ does not possess this property for $p=o(n^{-2/3})$.
102 - C.P. Dettmann , T.B. Howard 2009
The escape rate of a stochastic dynamical system can be found as an expansion in powers of the noise strength. In previous work the coefficients of such an expansion for a one-dimensional map were fitted to a general form containing a few parameters. These parameters were found to be related to the fractal structure of the repeller of the system. The parameter alpha, the noise dimension, remains to be interpreted. This report presents new data for alpha showing that the relation to the dimensions is more complicated than predicted in earlier work and oscillates as a function of the map parameter, in contrast to other dimension-like quantities.
We determine, up to a multiplicative constant, the optimal number of random edges that need to be added to a $k$-graph $H$ with minimum vertex degree $Omega(n^{k-1})$ to ensure an $F$-factor with high probability, for any $F$ that belongs to a certain class $mathcal{F}$ of $k$-graphs, which includes, e.g., all $k$-partite $k$-graphs, $K_4^{(3)-}$ and the Fano plane. In particular, taking $F$ to be a single edge, this settles a problem of Krivelevich, Kwan and Sudakov [Combin. Probab. Comput. 25 (2016), 909--927]. We also address the case in which the host graph $H$ is not dense, indicating that starting from certain such $H$ is essentially the same as starting from an empty graph (namely, the purely random model).
Given an $n$-vertex graph $G$ with minimum degree at least $d n$ for some fixed $d > 0$, the distribution $G cup mathbb{G}(n,p)$ over the supergraphs of $G$ is referred to as a (random) {sl perturbation} of $G$. We consider the distribution of edge-coloured graphs arising from assigning each edge of the random perturbation $G cup mathbb{G}(n,p)$ a colour, chosen independently and uniformly at random from a set of colours of size $r := r(n)$. We prove that such edge-coloured graph distributions a.a.s. admit rainbow Hamilton cycles whenever the edge-density of the random perturbation satisfies $p := p(n) geq C/n$, for some fixed $C > 0$, and $r = (1 + o(1))n$. The number of colours used is clearly asymptotically best possible. In particular, this improves upon a recent result of Anastos and Frieze (2019) in this regard. As an intermediate result, which may be of independent interest, we prove that randomly edge-coloured sparse pseudo-random graphs a.a.s. admit an almost spanning rainbow path.
Maker-Breaker games are played on a hypergraph $(X,mathcal{F})$, where $mathcal{F} subseteq 2^X$ denotes the family of winning sets. Both players alternately claim a predefined amount of edges (called bias) from the board $X$, and Maker wins the game if she is able to occupy any winning set $F in mathcal{F}$. These games are well studied when played on the complete graph $K_n$ or on a random graph $G_{n,p}$. In this paper we consider Maker-Breaker games played on randomly perturbed graphs instead. These graphs consist of the union of a deterministic graph $G_alpha$ with minimum degree at least $alpha n$ and a binomial random graph $G_{n,p}$. Depending on $alpha$ and Breakers bias $b$ we determine the order of the threshold probability for winning the Hamiltonicity game and the $k$-connectivity game on $G_{alpha}cup G_{n,p}$, and we discuss the $H$-game when $b=1$. Furthermore, we give optimal results for the Waiter-Clie
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا