Do you want to publish a course? Click here

Time-dependent particle acceleration in supernova remnants in different environments

94   0   0.0 ( 0 )
 Added by K.M. Schure
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We simulate time-dependent particle acceleration in the blast wave of a young supernova remnant (SNR), using a Monte Carlo approach for the diffusion and acceleration of the particles, coupled to an MHD code. We calculate the distribution function of the cosmic rays concurrently with the hydrodynamic evolution of the SNR, and compare the results with those obtained using simple steady-state models. The surrounding medium into which the supernova remnant evolves turns out to be of great influence on the maximum energy to which particles are accelerated. In particular, a shock going through a $rho propto r^{-2}$ density profile causes acceleration to typically much higher energies than a shock going through a medium with a homogeneous density profile. We find systematic differences between steady-state analytical models and our time-dependent calculation in terms of spectral slope, maximum energy, and the shape of the cut-off of the particle spectrum at the highest energies. We also find that, provided that the magnetic field at the reverse shock is sufficiently strong to confine particles, cosmic rays can be easily re-accelerated at the reverse shock.



rate research

Read More

According to the most popular model for the origin of cosmic rays (CRs), supernova remnants (SNRs) are the site where CRs are accelerated. Observations across the electromagnetic spectrum support this picture through the detection of non-thermal emission that is compatible with being synchrotron or inverse Compton radiation from high energy electrons, or pion decay due to proton-proton interactions. These observations of growing quantity and quality promise to unveil many aspects of CRs acceleration and require more and more accurate tools for their interpretation. Here, we show how multi-dimensional MHD models of SNRs, including the effects on shock dynamics due to back-reaction of accelerated CRs and the synthesis of non-thermal emission, turned out to be very useful to investigate the signatures of CRs acceleration and to put constraints on the acceleration mechanism of high energy particles. These models have been used to interpret accurately observations of SNRs in various bands (radio, X-ray and $gamma$-ray) and to extract from them key information about CRs acceleration.
Plerionic supernova remnants exhibit radio emission with remarkably flat spectral indices ranging from $alpha=0.0$ to $alpha=-0.3$. The origin of very hard particle energy distributions still awaits an explanation, since shock waves generate particle distributions with synchrotron spectra characterized by $alphale-0.5$. Acceleration of high energy leptons in magnetohydrodynamic turbulence instead may be responsible for the observed hard spectra. This process is studied by means of relativistic test particle calculations using electromagnetic fields produced by three-dimensional simulations of resistive magnetohydrodynamical turbulence. The particles receive power-law energy spectra $N(gamma)propto gamma^{-s}$ with $s$ ranging from 1.2 to 1.6, i.e. particle spectra that are required to explain the radio emission of plerions.
Within our Galaxy, supernova remnants are believed to be the major sources of cosmic rays up to the knee. However important questions remain regarding the share of the hadronic and leptonic components, and the fraction of the supernova energy channelled into these components. We address such question by the means of numerical simulations that combine a hydrodynamic treatment of the shock wave with a kinetic treatment of particle acceleration. Performing 3D simulations allows us to produce synthetic projected maps and spectra of the thermal and non-thermal emission, that can be compared with multi-wavelength observations (in radio, X-rays, and gamma-rays). Supernovae come in different types, and although their energy budget is of the same order, their remnants have different properties, and so may contribute in different ways to the pool of Galactic cosmic-rays. Our first simulations were focused on thermonuclear supernovae, like Tychos SNR, that usually occur in a mostly undisturbed medium. Here we present our 3D simulations of core-collapse supernovae, like the Cas A SNR, that occur in a more complex medium bearing the imprint of the wind of the progenitor star.
Supernova remnants (SNRs) are believed to accelerate particles up to high energies through the mechanism of diffusive shock acceleration (DSA). Except for direct plasma simulations, all modeling efforts must rely on a given form of the diffusion coefficient, a key parameter that embodies the interactions of energetic charged particles with the magnetic turbulence. The so-called Bohm limit is commonly employed. In this paper we revisit the question of acceleration at perpendicular shocks, by employing a realistic model of perpendicular diffusion. Our coefficient reduces to a power-law in momentum for low momenta (of index $alpha$), but becomes independent of the particle momentum at high momenta (reaching a constant value $kappa_{infty}$ above some characteristic momentum $p_{rm c}$). We first provide simple analytical expressions of the maximum momentum that can be reached at a given time with this coefficient. Then we perform time-dependent numerical simulations to investigate the shape of the particle distribution that can be obtained when the particle pressure back-reacts on the flow. We observe that, for a given index $alpha$ and injection level, the shock modifications are similar for different possible values of $p_{rm c}$, whereas the particle spectra differ markedly. Of particular interest, low values of $p_{rm c}$ tend to remove the concavity once thought to be typical of non-linear DSA, and result in steep spectra, as required by recent high-energy observations of Galactic SNRs.
We calculate the energy spectra of cosmic rays (CR) and their secondaries produced in a supernova remnant (SNR), taking into account the time-dependence of the SNR shock. We model the trajectories of charged particles as a random walk with a prescribed diffusioncoefficient, accelerating the particles at each shock crossing. Secondary production by CRs colliding with gas is included as a Monte Carlo process. We find that SNRs produce less antimatter than suggested previously: The positron/electron ratio and the antiproton/proton ratio are a few percent and few $times 10^{-5}$, respectively. Both ratios do not rise with energy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا