Do you want to publish a course? Click here

Isoelectronic Ru substitution at Fe-site in Sm(Fe1-xRux)As(O0.85F0.15) compound and its effects on structural, superconducting and normal state properties

125   0   0.0 ( 0 )
 Added by Matteo Tropeano
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we present a systematic experimental and theoretical study of the structural, transport and superconducting properties of Sm(Fe1-xRux)As(O0.85F0.15) polycrystalline samples as a function of Ru content (x) ranging from 0 to 1. The choice of Ru as isoelectronic substitution at Fe site of F-doped compounds allows to better clarify the role of structural disorder in modifying the normal and superconducting properties of these newly discovered multiband superconductors. Two different regions are identified: the Fe-rich phase (x<0.5) where superconducting and normal state properties are strongly affected by disorder induced by Ru substitution; the Ru-rich phase (x>0.5) where the system is metallic and strongly compensated and the presence of Ru frustrates the magnetic moment on Fe ions. Here the lack of magnetic features and related spin fluctuations may be the cause for the suppression of superconductivity.



rate research

Read More

The electronic and superconducting properties of Fe1-xSe single-crystal flakes grown hydrothermally are studied by the transport measurements under zero and high magnetic fields up to 38.5 T. The results contrast sharply with those previously reported for nematically ordered FeSe by chemical-vapor-transport (CVT) growth. No signature of the electronic nematicity, but an evident metal-to-nonmetal crossover with increasing temperature, is detected in the normal state of the present hydrothermal samples. Interestingly, a higher superconducting critical temperature Tc of 13.2 K is observed compared to a suppressed Tc of 9 K in the presence of the nematicity in the CVT FeSe. Moreover, the upper critical field in the zero-temperature limit is found to be isotropic with respect to the field direction and to reach a higher value of ~42 T, which breaks the Pauli limit by a factor of 1.8.
We report on detailed structural, electronic and magnetic studies of GdMn$_{1-x}$Cr$_x$O$_3$ for Cr doping levels 0 $le$ $x$ $le$ 1. In the solid solutions, the Jahn-Teller distortion associated with Mn$^{3+}$ ions gives rise to major changes in the ${bc}$-plane sub-lattice and also the effective orbital ordering in the ${ab}$-plane, which persist up to the compositions $x$ $sim$ 0.35. These distinct features in the lattice and orbital degrees of freedom are also correlated with $bc$-plane anisotropy of the local Gd environment. A gradual evolution of electronic states with doping is also clearly seen in O $K$-edge x-ray absorption spectra. Evidence of magnetization reversal in field-cooled-cooling mode for $x$ $ge$ 0.35 coinciding the Jahn-Teller crossover, suggests a close correlation between magnetic interaction and structural distortion. These observations indicate a strong entanglement between lattice, spin, electronic and orbital degrees of freedom. The nonmonotonic variation of remnant magnetization can be explained by doping induced modification of magnetic interactions. Density functional theory calculations are consistent with a layer-by-layer type doping with ferromagnetic (antiferomagnetic) coupling between Mn (Cr) ions for intermediate compound ($x$ = 0.5), which is distinct from that observed for the end members GMnO$_3$ and GdCrO$_3$.
The antiferromagnetic order and structural distortion in the LaFe(As1-xSbx)O system have been investigated by powder neutron diffraction and physical properties measurements. Polycrystalline samples of LaFe(As1-xSbx)O (x<0.5) were prepared using solid state synthesis at ambient and high pressure. We find that the isoelectronic substitution of Sb for As decreases the structural and magnetic transition temperatures but, contrary to the effects of phosphorus substitution, superconductivity is not induced. Instead a slight increase in the Fe magnetic moment is observed.
We present a calorimetric study on single crystals of Ca(Fe1-xCox)2As2 (x = 0, 0.032, 0.051, 0.056, 0.063, and 0.146). The combined first order spin-density wave/structural transition occurs in the parent CaFe2As2 compound at 168 K and gradually shifts to lower temperature for low doping levels (x = 0.032 and x = 0.051). It is completely suppressed upon higher doping x = 0.056. Simultaneously, superconductivity appears at lower temperature with a transition temperature around Tc = 14.1 K for Ca(Fe0.937Co0.063)2As2. The phase diagram of Ca(Fe0.937Co0.063)2As2 has been derived and the upper critical field is found to be H(c) c2 = 11.5
The ab-plane resistivity of Ba(Fe1-xRux)2As2 (x = 0.00, 0.09, 0.16, 0.21, and 0.28) was studied under nearly hydrostatic pressures, up to 7.4 GPa, in order to explore the T-P phase diagram and to compare the combined effects of iso-electronic Ru substitution and pressure. The parent compound BaFe2As2 exhibits a structural/magnetic phase transition near 134 K. At ambient pressure, progressively increasing Ru concentration suppresses this phase transition to lower temperatures at the approximate rate of ~5 K/% Ru and is correlated with the emergence of superconductivity. By applying pressure to this system, a similar behavior is seen for each concentration: the structural/magnetic phase transition is further suppressed and superconductivity induced and ultimately, for larger x Ru and P, suppressed. A detailed comparison of the T-P phase diagrams for all Ru concentrations shows that 3 GPa of pressure is roughly equivalent to 10% Ru substitution. Furthermore, due to the sensitivity of Ba(Fe1-xRux)2As2 to pressure conditions, the melting of the liquid media, 4 : 6 light mineral oil : n-pentane and 1 : 1 iso-pentane : n-pentane, used in this study could be readily seen in the resistivity measurements. This feature was used to determine the freezing curves for these media and infer their room temperature, hydrostatic limits: 3.5 and 6.5 GPa, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا