Do you want to publish a course? Click here

Evidence of a universal and isotropic 2Delta/kBTC ratio in 122-type iron pnictide superconductors over a wide doping range

97   0   0.0 ( 0 )
 Added by Xiaohang Zhang
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have systematically investigated the doping and the directional dependence of the gap structure in the 122-type iron pnictide superconductors by point contact Andreev reflection spectroscopy. The studies were performed on single crystals of Ba1-xKxFe2As2 (x = 0.29, 0.49, and 0.77) and SrFe1.74Co0.26As2 with a sharp tip of Pb or Au pressed along the c-axis or the ab-plane direction. The conductance spectra obtained on highly transparent contacts clearly show evidence of a robust superconducting gap. The normalized curves can be well described by the Blonder-Tinkham-Klapwijk model with a lifetime broadening. The determined gap value scales very well with the transition temperature, giving the 2{Delta}/kBTC value of ~ 3.1. The results suggest the presence of a universal coupling behavior in this class of iron pnictides over a broad doping range and independent of the sign of the doping. Moreover, conductance spectra obtained on c-axis junctions and ab-plane junctions indicate that the observed gap is isotropic in these superconductors.



rate research

Read More

The upper critical fields ($H_{c2}$) of the single crystals $rm(Sr,Na)Fe_2As_2$ and $rm Ba_{0.55}K_{0.45}Fe_2As_2$ were determined by means of measuring the electrical resistivity, $ rho_{xx}(mu_0H)$, using the facilities of pulsed magnetic field at Los Alamos. In general, these compounds possess a very large upper critical field ($H_{c2}(0)$) with a weak anisotropic effect. The detailed curvature of $H_{c2}(T_c)$ may depend on the magnetic field orientation and the sample compositions. We argue that such a difference mainly results from the multi-band effect, which might be modified via doping.
67 - Ang Li , J.-X. Yin , Jihui Wang 2016
The surface terminations of 122-type alkaline earth metal iron pnictides AEFe2As2 (AE = Ca, Ba) are investigated with scanning tunneling microscopy/spectroscopy (STM/STS). Cleaving these crystals at a cryogenic temperature yields a large majority of terminations with atomically resolved square-root-two (rt2) or 1*2 lattice, as well as the very rare terminations with 1*1 symmetry. By means of lattice alignment and chemical marking, we identify these terminations as rt2-AE, 1*2-As, and rt2-Fe surfaces, respectively. Layer-resolved spectroscopy on these terminating surfaces reveals a well-defined superconducting gap on the As terminations, while the gap features become weaker and absent on AE and Fe terminations respectively. The local gap features are hardly affected by the surface reconstruction on As or AE surface, whereas a suppression of them along with the in-gap states can be induced by As vacancies. The emergence of two impurity resonance peaks at +-2 meV is consistent with the sign-reversal pairing symmetry. The definite identification of surface terminations and their spectroscopic signatures shall provide a more comprehensive understanding of the high-temperature superconductivity in multilayered iron pnictides.
The experimental transport scattering rate was determined for a wide range of optimally doped transition metal-substituted FeAs-based compounds with the ThCr2Si2 (122) crystal structure. The maximum transition temperature Tc for several Ba-, Sr-, and Ca-based 122 systems follows a universal rate of suppression with increasing scattering rate indicative of a common pair-breaking mechanism. Extraction of standard pair-breaking parameters puts a limit of sim26 K on the maximum Tc for all transition metal-substituted 122 systems, in agreement with experimental observations, and sets a critical scattering rate of 1.5x10^14 s^-1 for the suppression of the superconducting phase. The observed critical scattering rate is much weaker than that expected for a sign-changing order parameter, providing important constraints on the nature of the superconducting gap in the 122 family of iron-based superconductors.
Detailed measurements of the in-plane resistivity were performed in a high-quality Ba(Fe$_{1-x}$Co$_{x}$)$_2$As$_2$ ($x=0.065$) single crystal, in magnetic fields up to 9 T and with different orientations $theta$ relative to the crystal $c$ axis. A significant $rho(T)_{H,theta}$ rounding is observed just above the superconducting critical temperature $T_c$ due to Cooper pairs created by superconducting fluctuations. These data are analyzed in terms of a generalization of the Aslamazov-Larkin approach, that extends its applicability to high reduced-temperatures and magnetic fields. This method allows us to carry out a criterion-independent determination of the angular dependence of the upper critical field, $H_{c2}(theta)$. In spite of the relatively small anisotropy of this compound, it is found that $H_{c2}(theta)$ presents a significant deviation from the single-band 3D anisotropic Ginzburg-Landau (3D-aGL) approach, particularly for large $theta$ (typically above $sim60^o$). These results are interpreted in terms of the multiband nature of these materials, in contrast with other proposals for similar $H_{c2}(theta)$ anomalies. Our results are also consistent with an effective anisotropy factor almost temperature independent near $T_c$, a result that differs from the ones obtained by using a single-band model.
Insight into the electronic structure of the pnictide family of superconductors is obtained from quantum oscillation measurements. Here we review experimental quantum oscillation data that reveal a transformation from large quasi-two dimensional electron and hole cylinders in the paramagnetic overdoped members of the pnictide family to significantly smaller three-dimensional Fermi surface sections in the antiferromagnetic parent members, via a potential quantum critical point at which an effective mass enhancement is observed. Similarities with the Fermi surface evolution from the overdoped to the underdoped normal state of the cuprate superconducting family are discussed, along with the enhancement in antiferromagnetic correlations in both these classes of materials, and the potential implications for superconductivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا