Do you want to publish a course? Click here

Temperature dependence of the nonlocal voltage in an Fe/GaAs electrical spin injection device

370   0   0.0 ( 0 )
 Added by Gian Salis
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nonlocal spin resistance is measured as a function of temperature in a Fe/GaAs spin-injection device. For nonannealed samples that show minority-spin injection, the spin resistance is observed up to room temperature and decays exponentially with temperature at a rate of 0.018,K$^{-1}$. Post-growth annealing at 440,K increases the spin signal at low temperatures, but the decay rate also increases to 0.030,K$^{-1}$. From measurements of the diffusion constant and the spin lifetime in the GaAs channel, we conclude that sample annealing modifies the temperature dependence of the spin transfer efficiency at injection and detection contacts. Surprisingly, the spin transfer efficiency increases in samples that exhibit minority-spin injection.



rate research

Read More

We investigated the spin-dependent transport properties of a lateral spin-valve device with a 600 nm-long GaAs channel and ferromagnetic MnGa electrodes with perpendicular magnetization. Its current-voltage characteristics show nonlinear behavior below 50 K, indicating that tunnel transport through the MnGa/GaAs Schottky barrier is dominant at low temperatures. We observed clear magnetoresistance (MR) ratio up to 12% at 4 K when applying a magnetic field perpendicular to the film plane. Furthermore, a large spin-dependent output voltage of 33 mV is obtained. These values are the highest in lateral ferromagnetic metal / semiconductor / ferromagnetic metal spin-valve devices reported so far.
Spin injection from Co70Fe30 and Fe contacts into bulk GaAs(001) epilayers is studied experimentally. Using nonlocal measurements, the spin polarization of the differential conductance is determined as a function of the bias voltage applied across the injection interface. The spectra reveal an interface-related minority-spin peak at forward bias and a majority-spin peak at reverse bias, and are very similar, but shifted in energy, for Co70Fe30 and for Fe contacts. An increase of the spin-injection efficiency and a shift of the spectrum correlate with the Ga-to-As ratio at the interface between CoFe and GaAs.
Spin dephasing via the spin-orbit interaction (SOI) is a major mechanism limiting the electron spin lifetime in III-V zincblende quantum wells. The dephasing can be suppressed in GaAs(111) quantum wells by applying an electric field. The suppression has been attributed to the compensation of the intrinsic SOI associated by the bulk inversion asymmetry (BIA) of the GaAs lattice by a structural induced asymmetry (SIA) SOI term induced by an electric field. We provide direct experimental evidence for this mechanism by demonstrating the transition between the BIA-dominated to a SIA-dominated regime via photoluminescence measurements carried out over a wide range of applied fields. Spin lifetimes exceeding 100~ns are obtained near the compensating electric field, thus making GaAs (111) QWs excellent candidates for the electrical storage and manipulation of spins.
The bias dependence of spin injection in graphene lateral spin valves is systematically studied to determine the factors affecting the tunneling spin injection efficiency. Three types of junctions are investigated, including MgO and hexagonal boron nitride (hBN) tunnel barriers and direct contacts. A DC bias current applied to the injector electrode induces a strong nonlinear bias dependence of the nonlocal spin signal for both MgO and hBN tunnel barriers. Furthermore, this signal reverses its sign at a negative DC bias for both kinds of tunnel barriers. The analysis of the bias dependence for injector electrodes with a wide range of contact resistances suggests that the sign reversal correlates with bias voltage rather than current. We consider different mechanisms for nonlinear bias dependence and conclude that the energy-dependent spin-polarized electronic structure of the ferromagnetic electrodes, rather than the electrical field-induced spin drift effect or spin filtering effect of the tunnel barrier, is the most likely explanation of the experimental observations.
We combine ab initio density functional theory with transport calculations to provide a microscopic basis for distinguishing between good and poor metal contacts to nanotubes. Comparing Ti and Pd as examples of different contact metals, we trace back the observed superiority of Pd to the nature of the metal-nanotube hybridization. Based on large scale Landauer transport calculations, we suggest that the `optimum metal-nanotube contact combines a weak hybridization with a large contact length between the metal and the nanotube.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا