Dark Matter Particles with Low Mass (and FTL)


Abstract in English

From the observed results, we deduced that the mass of the neutrino is about 10^(-1) eV and the mass of the fourth stable elementary particle (delta) is about 10^(0) eV. While neutrino is related to electro-weak field, the fourth stable elementary particle delta is related to gravitation-strong field, and some new meta-stable baryons may appear near the TeV region. Therefore, a twofold standard model diagram is proposed, and involves some experiment phenomena: The new meta-stable baryons decays produce delta particles, which are helpful in explaining the Dijet asymmetry phenomena at LHC of CERN, the different results for the Fermilabs data peak, etc; However, according to the (B-L) invariance, the sterile neutrino about the event excess in MiniBooNe is not the fourth neutrino but rather the delta particle; We think that the delta particles are related to the phenomenon about neutrinos FTL, and that anti-neutrinos are faster than neutrinos. FTL is also related to cosmic inflation, singular point disappearance, a finite universe, and abnormal red shift of SN Ia. Besides, the dark matter particles with low mass are helpful in explaining missing solar neutrinos, the CMB angular power spectrum measured by WMAP etc. Some experiments and observations are suggested, especially about the measurement for the speed of gravitational wave c. c and c, in physics, represent the limit speeds of moving particles made by different categories of matter with different Lorentz factors. Lorentz transformation is compatible with FTL. This will be helpful to look for new particles.

Download