Contact superconductivity in In-PbTe junctions


Abstract in English

The authors report on electron transport studies on superconductor-semiconductor hybrid structures of indium and n-type lead telluride, either in the form of quantum wells or bulk crystals. In-PbTe contacts form by spontaneous alloying, which occurs already at room temperature. The alloyed phase penetrates deeply into PbTe and forms metallic contacts even in the presence of depletion layers at the semiconductor surface. Although the detailed structure of this phase is unknown, we observe that it exhibits a superconducting transition at temperatures below 10 K. This causes such substantial reduction of the contact resistances that they even become comparable to those predicted for ideal superconductor-normal conductor contacts. Most importantly, this result indicates that the interface phase in the superconducting state becomes nearly homogeneous - in contrast to the structure expected for alloyed contacts. We suggest that the unusual interface superconductivity is linked to the unique properties of PbTe, namely, its huge static dielectric constant. Apparently the alloyed interface phase contains superconducting precipitates randomly distributed within the depletion layers, and their Coulomb charging energies are extremely small. According to the existing models of the granular superconductivity, even very weak Josephson coupling between the neighboring precipitates gives rise to the formation of a global superconducting phase which explains our observations.

Download