The Coulomb interaction is widely known to enhance the effective mass of interacting particles and therefore tends to favor a localized state at commensurate filling. Here, we will show that, in contrast to this consensus, in a van der Waals heterostructure consisting of graphene and hexagon boron nitride (h-BN), the onsite Coulomb repulsion will at first destroy the localized state. This is due to the fact that the onsite Coulomb repulsion tends to suppress the asymmetry between neighboring carbons induced by h-BN substrate. We corroborate this surprising phenomenon by solving a tight-binding model with onsite Coulomb repulsion treated within coherent potential approximation, where hopping parameters are derived from density functional theory calculations based on the graphene/h-BN heterostructure. Our results indicate that both gapless and gapped states observed experimentally in graphene/h-BN heterostructures can be understood after a realistic value of the onsite Coulomb repulsion as well as different interlayer distances are taken into account. Finally, we propose ways to enhance the gapped state which is essential for potential application of graphene to next-generation electronics. Furthermore, we argue that band gap suppressed by many-body effect should happen in other van der Waals heterostructures.
We theoretically study the effect of electron-electron interactions on the metallic state of quasicrystals. To address the problem, we introduce the extended Hubbard model on the Ammann-Beenker tiling as a simple theoretical model. The model is numerically solved within an inhomogeneous mean-field theory. Because of the lack of periodicity, the metallic state is nonuniform in the electron density even in the noninteracting limit. We clarify how this charge distribution pattern changes with electron-electron interactions. We find that the intersite interactions change the distribution substantially and in an electron-hole asymmetric way. We clarify the origin of these changes through the analyses in the real and perpendicular spaces. Our results offer a fundamental basis to understand the electronic states in quasicrystalline metals.
High temperature cuprate superconductivity remains a defining problem in condensed matter physics. Among myriad approaches to addressing this problem has been the study of alternative transition metal oxides with similar structures and 3d electron count that are suggested as proxies for cuprate physics. None of these analogs has been superconducting, and few are even metallic. Here, we report that the low-valent, quasi-two-dimensional trilayer compound, Pr4Ni3O8 avoids a charge-stripe ordered phase previously reported for La4Ni3O8, leading to a metallic ground state. By combining x-ray absorption spectroscopy and density functional theory calculations, we further find that metallic Pr4Ni3O8 exhibits a low-spin configuration and significant orbital polarization of the unoccupied eg states with pronounced dx2-y2 character near the Fermi energy, both hallmarks of the cuprate superconductors. Belonging to a regime of 3d electron count found for hole-doped cuprates, Pr4Ni3O8 thus represents one of the closest analogies to cuprates yet reported and a singularly promising candidate for high-Tc superconductivity if appropriately doped.
The metal-insulator transition and unconventional metallic transport in vanadium dioxide (VO$_2$) are investigated with a combination of spectroscopic ellipsometry and reflectance measurements. The data indicates that electronic correlations, not electron-phonon interactions, govern charge dynamics in the metallic state of VO$_2$. This study focuses on the frequency and temperature dependence of the conductivity in the regime of extremely short mean free path violating the Ioffe-Regel-Mott limit of metallic transport. The standard quasiparticle picture of charge conduction is found to be untenable in metallic VO$_2$.
The recent discovery of Spin-ice is a spectacular example of non-coplanar spin arrangements that can arise in the pyrochlore A2B2O7 structure. We present magnetic and thermodynamic studies on the metallic-ferromagnet pyrochlore Sm2Mo2O7. Our studies, carried out on oriented crystals, suggest that the Sm spins have an ordered spin-ice ground state below about T* = 15 K. The temperature- and field-evolution of the ordered spin-ice state are governed by an antiferromagnetic coupling between the Sm and Mo spins. We propose that as a consequence of a robust feature of this coupling, the tetrahedra aligned with the external field adopt a 1-in, 3-out spin structure as opposed to 3-in, 1-out in dipolar spin ices, as the field exceeds a critical value.