Do you want to publish a course? Click here

Evidence for triplet superconductivity in Josephson junctions with ferromagnetic Cu$_{2}$MnAl-Heusler barriers

304   0   0.0 ( 0 )
 Added by Dirk Sprungmann
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied Josephson junctions with barriers prepared from the Heusler compound Cu$_2$MnAl. In the as-prepared state the Cu$_2$MnAl layers are non ferromagnetic and the critical Josephson current density $j_{c}$ decreases exponentially with the thickness of the Heusler layers $d_{F}$. On annealing the junctions at 240degree C the Heusler layers develop ferromagnetic order and we observe a dependence $j_{c}(d_{F}$) with $j_{c}$ strongly enhanced and weakly thickness dependent in the thickness range 7.0 nm < $d_{F}$ < 10.6 nm. We attribute this feature to a triplet component in the superconducting pairing function generated by the specific magnetization profile inside thin Cu$_2$MnAl layers.



rate research

Read More

Josephson tunnel junctions with the strong ferromagnetic alloy $Fe_{0.75}Co_{0.25}$ as the barrier material were studied. The junctions were prepared with high quality down to a thickness range of a few monolayers of Fe-Co. An oscillation length of $xi_{F2}approx 0.79:{rm {nm}}$ between 0 and $pi$-Josephson phase coupling and a very short decay length $xi_{F1}approx 0.22:{rm {nm}}$ for the amplitude of the superconducting pair wave function in the Fe-Co layer were determined. The rapid damping of the pair wave function inside the Fe-Co layer is caused by the strong ferromagnetic exchange field and additional magnetic pair breaking scattering. Josephson junctions with Fe-Co barriers show a significantly increased tendency towards magnetic remanence and flux trapping for larger thicknesses $d_{F}$.
Josephson junctions containing three ferromagnetic layers with non-collinear magnetizations between adjacent layers carry spin-triplet supercurrent under certain conditions. The signature of the spin-triplet supercurrent is a relatively slow decay of the maximum supercurrent as a function of the thickness of the middle ferromagnetic layer. In this work we focus on junctions where the middle magnetic layer is a [Co/Pd]$_N$ multilayer with perpendicular magnetic anisotropy (PMA), while the outer two layers have in-plane anisotropy. We compare junctions where the middle PMA layer is or is not configured as a synthetic antiferromagnet (PMA-SAF). We find that the supercurrent decays much more rapidly with increasing the number $N$ of [Co/Pd] bilayers in the PMA-SAF junctions compared to the PMA junctions. Similar behavior is observed in junctions containing [Co/Ni]$_N$ PMA multilayers. We model that behavior by assuming that each Co/Pd or Co/Ni interface acts as a partial spin filter, so that the spin-triplet supercurrent in the PMA junctions becomes more strongly spin-polarized as $N$ increases while the supercurrent in the PMA-SAF junctions is suppressed with increasing $N$. We also address a question raised in a previous work regarding how much spin-singlet supercurrent is transmitted through our nominally spin-triplet junctions. We do that by comparing spin-triplet junctions with similar junctions where the order of the magnetic layers has been shuffled. The results of this work are expected to be helpful in designing spin-triplet Josephson junctions for use in cryogenic memory.
In the past year, several groups have observed evidence for long-range spin-triplet supercurrent in Josephson junctions containing ferromagnetic (F) materials. In our work, the spin-triplet pair correlations are created by non-collinear magnetizations between a central Co/Ru/Co synthetic antiferromagnet (SAF) and two outer thin F layers. Here we present data showing that the spin-triplet supercurrent is enhanced up to 20 times after our samples are subject to a large in-plane magnetizing field. This surprising result can be explained if the Co/Ru/Co SAF undergoes a spin-flop transition, whereby the two Co layer magnetizations end up perpendicular to the magnetizations of the two thin F layers. Direct experimental evidence for the spin-flop transition comes from scanning electron microscopy with polarization analysis and from spin-polarized neutron reflectometry.
128 - Yixing Wang , W P Pratt , Jr 2011
In 2010, several experimental groups obtained compelling evidence for spin-triplet supercurrent in Josephson junctions containing strong ferromagnetic materials. Our own best results were obtained from large-area junctions containing a thick central Co/Ru/Co synthetic antiferromagnet and two thin outer layers made of Ni or PdNi alloy. Because the ferromagnetic layers in our samples are multi-domain, one would expect the sign of the local current-phase relation inside the junctions to vary randomly as a function of lateral position. Here we report measurements of the area dependence of the critical current in several samples, where we find some evidence for those random sign variations. When the samples are magnetized, however, the critical current becomes clearly proportional to the area, indicating that the current-phase relation has the same sign across the entire area of the junctions.
Josephson junctions containing ferromagnetic materials have attracted intense interest both because of their unusual physical properties and because they have potential application for cryogenic memory. There are two ways to store information in such a junction: either in the amplitude of the critical current or in the ground-state phase difference across the junction; the latter is the topic of this paper. We have recently demonstrated two different ways to achieve phase control in such junctions: the first uses junctions containing two magnetic layers in a pseudo spin valve configuration, while the second uses junctions containing three magnetic layers with non-collinear magnetizations. The demonstration devices, however, have not yet been optimized for use in a large-scale cryogenic memory array. In this paper we outline some of the issues that must be considered to perform such an optimization, and we provide a speculative phase-diagram for the nickel-permalloy spin-valve system showing which combinations of ferromagnetic layer thicknesses should produce useful devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا