Do you want to publish a course? Click here

A GA based Window Selection Methodology to Enhance Window based Multi wavelet transformation and thresholding aided CT image denoising technique

120   0   0.0 ( 0 )
 Added by Rdv Ijcsis
 Publication date 2010
and research's language is English




Ask ChatGPT about the research

Image denoising is getting more significance, especially in Computed Tomography (CT), which is an important and most common modality in medical imaging. This is mainly due to that the effectiveness of clinical diagnosis using CT image lies on the image quality. The denoising technique for CT images using window-based Multi-wavelet transformation and thresholding shows the effectiveness in denoising, however, a drawback exists in selecting the closer windows in the process of window-based multi-wavelet transformation and thresholding. Generally, the windows of the duplicate noisy image that are closer to each window of original noisy image are obtained by the checking them sequentially. This leads to the possibility of missing out very closer windows and so enhancement is required in the aforesaid process of the denoising technique. In this paper, we propose a GA-based window selection methodology to include the denoising technique. With the aid of the GA-based window selection methodology, the windows of the duplicate noisy image that are very closer to every window of the original noisy image are extracted in an effective manner. By incorporating the proposed GA-based window selection methodology, the denoising the CT image is performed effectively. Eventually, a comparison is made between the denoising technique with and without the proposed GA-based window selection methodology.



rate research

Read More

Thresholding is an important task in image processing. It is a main tool in pattern recognition, image segmentation, edge detection and scene analysis. In this paper, we present a new thresholding technique based on two-dimensional Tsallis entropy. The two-dimensional Tsallis entropy was obtained from the twodimensional histogram which was determined by using the gray value of the pixels and the local average gray value of the pixels, the work it was applied a generalized entropy formalism that represents a recent development in statistical mechanics. The effectiveness of the proposed method is demonstrated by using examples from the real-world and synthetic images. The performance evaluation of the proposed technique in terms of the quality of the thresholded images are presented. Experimental results demonstrate that the proposed method achieve better result than the Shannon method.
CT image quality is heavily reliant on radiation dose, which causes a trade-off between radiation dose and image quality that affects the subsequent image-based diagnostic performance. However, high radiation can be harmful to both patients and operators. Several (deep learning-based) approaches have been attempted to denoise low dose images. However, those approaches require access to large training sets, specifically the full dose CT images for reference, which can often be difficult to obtain. Self-supervised learning is an emerging alternative for lowering the reference data requirement facilitating unsupervised learning. Currently available self-supervised CT denoising works are either dependent on foreign domain or pretexts are not very task-relevant. To tackle the aforementioned challenges, we propose a novel self-supervised learning approach, namely Self-Supervised Window-Leveling for Image DeNoising (SSWL-IDN), leveraging an innovative, task-relevant, simple, yet effective surrogate -- prediction of the window-leveled equivalent. SSWL-IDN leverages residual learning and a hybrid loss combining perceptual loss and MSE, all incorporated in a VAE framework. Our extensive (in- and cross-domain) experimentation demonstrates the effectiveness of SSWL-IDN in aggressive denoising of CT (abdomen and chest) images acquired at 5% dose level only.
89 - Yan Gao , Feng Gao , Junyu Dong 2021
Hyperspectral images (HSIs) have been widely applied in many fields, such as military, agriculture, and environment monitoring. Nevertheless, HSIs commonly suffer from various types of noise during acquisition. Therefore, denoising is critical for HSI analysis and applications. In this paper, we propose a novel blind denoising method for HSIs based on Multi-Stream Denoising Network (MSDNet). Our network consists of the noise estimation subnetwork and denoising subnetwork. In the noise estimation subnetwork, a multiscale fusion module is designed to capture the noise from different scales. Then, the denoising subnetwork is utilized to obtain the final denoising image. The proposed MSDNet can obtain robust noise level estimation, which is capable of improving the performance of HSI denoising. Extensive experiments on HSI dataset demonstrate that the proposed method outperforms four closely related methods.
Image inpainting aims to complete the missing or corrupted regions of images with realistic contents. The prevalent approaches adopt a hybrid objective of reconstruction and perceptual quality by using generative adversarial networks. However, the reconstruction loss and adversarial loss focus on synthesizing contents of different frequencies and simply applying them together often leads to inter-frequency conflicts and compromised inpainting. This paper presents WaveFill, a wavelet-based inpainting network that decomposes images into multiple frequency bands and fills the missing regions in each frequency band separately and explicitly. WaveFill decomposes images by using discrete wavelet transform (DWT) that preserves spatial information naturally. It applies L1 reconstruction loss to the decomposed low-frequency bands and adversarial loss to high-frequency bands, hence effectively mitigate inter-frequency conflicts while completing images in spatial domain. To address the inpainting inconsistency in different frequency bands and fuse features with distinct statistics, we design a novel normalization scheme that aligns and fuses the multi-frequency features effectively. Extensive experiments over multiple datasets show that WaveFill achieves superior image inpainting qualitatively and quantitatively.
When smartphone cameras are used to take photos of digital screens, usually moire patterns result, severely degrading photo quality. In this paper, we design a wavelet-based dual-branch network (WDNet) with a spatial attention mechanism for image demoireing. Existing image restoration methods working in the RGB domain have difficulty in distinguishing moire patterns from true scene texture. Unlike these methods, our network removes moire patterns in the wavelet domain to separate the frequencies of moire patterns from the image content. The network combines dense convolution modules and dilated convolution modules supporting large receptive fields. Extensive experiments demonstrate the effectiveness of our method, and we further show that WDNet generalizes to removing moire artifacts on non-screen images. Although designed for image demoireing, WDNet has been applied to two other low-levelvision tasks, outperforming state-of-the-art image deraining and derain-drop methods on the Rain100h and Raindrop800 data sets, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا