Do you want to publish a course? Click here

Influence of N*-resonances on hyperon production in the channel pp->K+ Lambda p at 2.95, 3.20 and 3.30 GeV/c beam momentum

102   0   0.0 ( 0 )
 Added by Wolfgang Eyrich
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

Hyperon production in the threshold region was studied in the reaction pp -> K+Lp using the time-of-flight spectrometer COSY-TOF. Exclusive data, covering the full phase-space, were taken at the three different beam momenta of p_beam=2.95, 3.20 and 3.30 GeV/c, corresponding to excess energies of epsilon=204, 285 and 316 MeV, respectively. Total cross-sections were deduced for the three beam momenta to be 23.9+/-0.8 +/-2.0 ub, 28.4+/-1.3 +/-2.2 ub and 35.0+/-1.3 +/-3.0 ub. Differential observables including Dalitz plots were obtained. The analysis of the Dalitz plots reveals a strong influence of the N(1650)-resonance at p_beam=2.95 GeV/c, whereas for the higher momenta an increasing relative contribution of the N(1710)- and/or of the N(1720)-resonance was observed. In addition, the pL-final-state interaction turned out to have a significant influence on the Dalitz plot distribution.



rate research

Read More

Results on $Lambda$ hyperon production are reported for collisions of p(3.5 GeV) + Nb, studied with the High Acceptance Di-Electron Spectrometer (HADES) at SIS18 at GSI Helmholtzzentrum for Heavy-Ion Research, Darmstadt. The transverse mass distributions in rapidity bins are well described by Boltzmann shapes with a maximum inverse slope parameter of about $90,$MeV at a rapidity of $y=1.0$, i.e. slightly below the center-of-mass rapidity for nucleon-nucleon collisions, $y_{cm}=1.12$. The rapidity density decreases monotonically with increasing rapidity within a rapidity window ranging from 0.3 to 1.3. The $Lambda$ phase-space distribution is compared with results of other experiments and with predictions of two transport approaches which are available publicly. None of the prese
The measurement of $K^{*}(892)^0$ resonance production via its $K^{+}pi^{-}$ decay mode in inelastic p+p collisions at beam momentum 158 GeV/$c$ ($sqrt{s_{NN}}=17.3$ GeV) is presented. The data were recorded by the NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The textit{template} method was used to extract the $K^{*}(892)^0$ signal and double differential transverse momentum and rapidity spectra were obtained. The full phase-space mean multiplicity of $K^{*}(892)^0$ mesons was found to be $(78.44 pm 0.38 mathrm{(stat)} pm 6.0 mathrm{(sys)) cdot 10^{-3}}$. The NA61/SHINE results are compared with the EPOS1.99 and Hadron Resonance Gas models as well as with world data from p+p and nucleus-nucleus collisions.
We report the first polarization transfer measurements for exclusive hyperon production reactions. The normal spin transfer coefficient DNN for pp -> p K+ Lambda is large and negative for forward Lambda production at a beam momentum of 3.67 GeV/c, a result qualitatively consistent with expectations for a mechanism dominated by kaon-exchange and rescattering. The sign of DNN is opposite to that observed in the fragmentation regime for inclusive Lambda production at much higher energies.
We have analyzed data of the DISTO experiment on the exclusive pp -> p Lambda K+ reaction at 2.85 GeV to search for a strongly bound compact K-pp (= X) state to be formed in the pp -> K+ + X reaction. The observed spectra of the K+ missing-mass and the p Lambda invariant-mass with high transverse momenta of p and K+ revealed a broad distinct peak with a mass M_X = 2265 +- 2 (stat) +- 5 (syst) MeV/c2 and a width Gamma_X = 118 +- 8 (stat) +- 10 (syst) MeV.
The cross sections for the reactions pp -> p Lambda^0K^+ and pn -> n Lambda^0K^+ are calculated near threshold of the final states. The theoretical ratio of the cross sections R = sigma(pn -> n Lambda^0K^+)/ sigma(pp ->pLambda^0K^+) = 3 shows the enhancement of the pn interaction with respect to the pp interaction near threshold of the strangeness production N Lambda^0K^+. Such an enhancement is caused by the contribution of the np interaction in the isospin-singlet state, which is stronger than the $pn$ interaction in the isospin-triplet state. For the confirmation of this result we calculate the cross sections for the reactions pp -> pp pi^0, pi^0 p -> Lambda^0 K^+ and pi^-p -> Lambda^0 K^0 near threshold of the final states. The theoretical cross sections agree well with the experimental data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا