Do you want to publish a course? Click here

Knockouts, Robustness and Cell Cycles

97   0   0.0 ( 0 )
 Added by Konstantin Klemm
 Publication date 2010
  fields Biology
and research's language is English




Ask ChatGPT about the research

The response to a knockout of a node is a characteristic feature of a networked dynamical system. Knockout resilience in the dynamics of the remaining nodes is a sign of robustness. Here we study the effect of knockouts for binary state sequences and their implementations in terms of Boolean threshold networks. Beside random sequences with biologically plausible constraints, we analyze the cell cycle sequence of the species Saccharomyces cerevisiae and the Boolean networks implementing it. Comparing with an appropriate null model we do not find evidence that the yeast wildtype network is optimized for high knockout resilience. Our notion of knockout resilience weakly correlates with the size of the basin of attraction, which has also been considered a measure of robustness.



rate research

Read More

Characterizing the capabilities, criticalities and response to perturbations of genome-scale metabolic networks is a basic problem with important applications. A key question concerns the identification of the potentially most harmful knockouts. The integration of combinatorial methods with sampling techniques to explore the space of viable flux states may provide crucial insights on this issue. We assess the replaceability of every metabolic conversion in the human red blood cell by enumerating the alternative paths from substrate to product, obtaining a complete map of the potential damage of single enzymopathies. Sampling the space of optimal flux states in the healthy and in the mutated cell reveals both correlations and complementarity between topologic and dynamical aspects.
Continuous cultures of mammalian cells are complex systems displaying hallmark phenomena of nonlinear dynamics, such as multi-stability, hysteresis, as well as sharp transitions between different metabolic states. In this context mathematical models may suggest control strategies to steer the system towards desired states. Although even clonal populations are known to exhibit cell-to-cell variability, most of the currently studied models assume that the population is homogeneous. To overcome this limitation, we use the maximum entropy principle to model the phenotypic distribution of cells in a chemostat as a function of the dilution rate. We consider the coupling between cell metabolism and extracellular variables describing the state of the bioreactor and take into account the impact of toxic byproduct accumulation on cell viability. We present a formal solution for the stationary state of the chemostat and show how to apply it in two examples. First, a simplified model of cell metabolism where the exact solution is tractable, and then a genome-scale metabolic network of the Chinese hamster ovary (CHO) cell line. Along the way we discuss several consequences of heterogeneity, such as: qualitative changes in the dynamical landscape of the system, increasing concentrations of byproducts that vanish in the homogeneous case, and larger population sizes.
To estimate the time, many organisms, ranging from cyanobacteria to animals, employ a circadian clock which is based on a limit-cycle oscillator that can tick autonomously with a nearly 24h period. Yet, a limit-cycle oscillator is not essential for knowing the time, as exemplified by bacteria that possess an hourglass: a system that when forced by an oscillatory light input exhibits robust oscillations from which the organism can infer the time, but that in the absence of driving relaxes to a stable fixed point. Here, using models of the Kai system of cyanobacteria, we compare a limit- cycle oscillator with two hourglass models, one that without driving relaxes exponentially and one that does so in an oscillatory fashion. In the limit of low input-noise, all three systems are equally informative on time, yet in the regime of high input-noise the limit-cycle oscillator is far superior. The same behavior is found in the Stuart-Landau model, indicating that our result is universal.
A fundamental question in biology is how cell populations evolve into different subtypes based on homogeneous processes at the single cell level. Here we show that population bimodality can emerge even when biological processes are homogenous at the cell level and the environment is kept constant. Our model is based on the stochastic partitioning of a cell component with an optimal copy number. We show that the existence of unimodal or bimodal distributions depends on the variance of partition errors and the growth rate tolerance around the optimal copy number. In particular, our theory provides a consistent explanation for the maintenance of aneuploid states in a population. The proposed model can also be relevant for other cell components such as mitochondria and plasmids, whose abundances affect the growth rate and are subject to stochastic partition at cell division.
In this paper we suggest that, under suitable conditions, supervised learning can provide the basis to formulate at the microscopic level quantitative questions on the phenotype structure of multicellular organisms. The problem of explaining the robustness of the phenotype structure is rephrased as a real geometrical problem on a fixed domain. We further suggest a generalization of path integrals that reduces the problem of deciding whether a given molecular network can generate specific phenotypes to a numerical property of a robustness function with complex output, for which we give heuristic justification. Finally, we use our formalism to interpret a pointedly quantitative developmental biology problem on the allowed number of pairs of legs in centipedes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا