Do you want to publish a course? Click here

Barred Galaxies in the Coma Cluster

481   0   0.0 ( 0 )
 Added by Irina Marinova
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use ACS data from the HST Treasury survey of the Coma cluster (z~0.02) to study the properties of barred galaxies in the Coma core, the densest environment in the nearby Universe. This study provides a complementary data point for studies of barred galaxies as a function of redshift and environment. From ~470 cluster members brighter than M_I = -11 mag, we select a sample of 46 disk galaxies (S0--Im) based on visual classification. The sample is dominated by S0s for which we find an optical bar fraction of 47+/-11% through ellipse fitting and visual inspection. Among the bars in the core of the Coma cluster, we do not find any very large (a_bar > 2 kpc) bars. Comparison to other studies reveals that while the optical bar fraction for S0s shows only a modest variation across low-to-intermediate density environments (field to intermediate-density clusters), it can be higher by up to a factor of ~2 in the very high-density environment of the rich Coma cluster core.



rate research

Read More

172 - Irina Marinova 2012
(ABRIDGED) We use high resolution (~0.1) F814W ACS images from the HST ACS Treasury survey of the Coma cluster at z~0.02 to study bars in massive disk galaxies (S0s), and in dwarf galaxies in the Coma core. Our study helps constrain the evolution of bars and disks in dense environments and provides a comparison point for studies in lower density environments and at higher redshifts. (1) We characterize the fraction and properties of bars in a sample of 32 bright (M_V <= -18, M_* > 10^9.5 M_sun) S0 galaxies, which dominate the population of massive disk galaxies in the Coma core. Measuring the S0 bar fraction must be handled carefully, as the results depend on the method used: the bar fraction for bright S0s in the Coma core is 50%+/-11%, 65%+/-11%, and 60%+/-11% for three methods of bar detection: strict ellipse fit criteria, relaxed ellipse fit criteria, and visual classification. (2) We compare the S0 bar fraction across different environments (Coma core, A901/902, Virgo). We find that the bar fraction among bright S0 galaxies does not show a statistically significant variation across environments spanning two orders of magnitude in galaxy number density (n~300-10,000 gal/Mpc^3). We speculate that the S0 bar fraction is not significantly enhanced in rich clusters because S0s in rich clusters are less prone to bar instabilities as they are dynamically hot and gas poor due to ram pressure stripping and accelerated star formation. In addition, high-speed encounters in rich clusters may be less effective than slow, strong encounters in inducing bars. (3) We analyze a sample of 333 faint (M_V > -18) dwarf galaxies in the Coma core. Using unsharp-masking, we find only 13 galaxies with bar and/or spiral structure. The paucity of disk structures in Coma dwarfs suggests that either disks are not common in these galaxies, or that any disks present are too hot to develop instabilities.
478 - E. Kourkchi 2011
We present the study of a large sample of early-type dwarf galaxies in the Coma cluster observed with DEIMOS on the Keck II to determine their internal velocity dispersion. We focus on a subsample of 41 member dwarf elliptical galaxies for which the velocity dispersion can be reliably measured, 26 of which were studied for the first time. The magnitude range of our sample is $-21<M_R<-15$ mag. This paper (paper I) focuses on the measurement of the velocity dispersion and their error estimates. The measurements were performed using {it pPXF (penalised PiXel Fitting)} and using the Calcium triplet absorption lines. We use Monte Carlo bootstrapping to study various sources of uncertainty in our measurements, namely statistical uncertainty, template mismatch and other systematics. We find that the main source of uncertainty is the template mismatch effect which is reduced by using templates with a range of spectral types. Combining our measurements with those from the literature, we study the Faber-Jackson relation ($Lproptosigma^alpha$) and find that the slope of the relation is $alpha=1.99pm0.14$ for galaxies brighter than $M_Rsimeq-16$ mag. A comprehensive analysis of the results combined with the photometric properties of these galaxies is reported in paper II.
We constrain the assembly history of galaxies in the projected central 0.5 Mpc of the Coma cluster by performing structural decomposition on 69 massive (M_star >= 10^9 M_sun) galaxies using high-resolution F814W images from the HST Treasury Survey of Coma. Each galaxy is modeled with up to three Sersic components having a free Sersic index n. After excluding the two cDs in the projected central 0.5 Mpc of Coma, 57% of the galactic stellar mass in the projected central 0.5 Mpc of Coma resides in classical bulges/ellipticals while 43% resides in cold disk-dominated structures. Most of the stellar mass in Coma may have been assembled through major (and possibly minor) mergers. Hubble types are assigned based on the decompositions, and we find a strong morphology-density relation; the ratio of (E+S0):spirals is (91.0%):9.0%. In agreement with earlier work, the size of outer disks in Coma S0s/spirals is smaller compared with lower-density environments captured with SDSS (Data Release 2). Among similar-mass clusters from a hierarchical semi-analytic model, no single cluster can simultaneously match all the global properties of the Coma cluster. The model strongly overpredicts the mass of cold gas and underpredicts the mean fraction of stellar mass locked in hot components over a wide range of galaxy masses. We suggest that these disagreements with the model result from missing cluster physics (e.g., ram-pressure stripping), and certain bulge assembly modes (e.g., mergers of clumps). Overall, our study of Coma underscores that galaxy evolution is not solely a function of stellar mass, but also of environment.
As part of the HST/ACS Coma Cluster Treasury Survey, we have undertaken a Keck/LRIS spectroscopic campaign to determine membership for faint dwarf galaxies. In the process, we discovered a population of Ultra Compact Dwarf galaxies (UCDs) in the core region of the Coma cluster. At the distance of Coma, UCDs are expected to have angular sizes 0.01 < R_e < 0.2 arcsec. With ACS imaging, we can resolve all but the smallest ones with careful fitting. Candidate UCDs were chosen based on magnitude, color, and degree of resolution. We spectroscopically confirm 27 objects as bona fide UCD members of the Coma cluster, a 60% success rate for objects targeted with M_R < -12. We attribute the high success rate in part to the high resolution of HST data and to an apparent large population of UCDs in Coma. We find that the UCDs tend to be strongly clustered around giant galaxies, at least in the core region of the cluster, and have a distribution and colors that are similar to globular clusters. These findings suggest that UCDs are not independent galaxies, but rather have a star cluster origin. This current study provides the dense environment datapoint necessary for understanding the UCD population.
We have undertaken a spectroscopic search for ultra compact dwarf galaxies (UCDs) in the dense core of the dynamically evolved, massive Coma cluster as part of the HST/ACS Coma Cluster Treasury Survey. UCD candidates were initially chosen based on color, magnitude, degree of resolution within the ACS images, and the known properties of Fornax and Virgo UCDs. Follow-up spectroscopy with Keck/LRIS confirmed 27 candidates as members of the Coma Cluster, a success rate > 60% for targeted objects brighter than M_R = -12. Another 14 candidates may also prove to be Coma members, but low signal-to-noise spectra prevent definitive conclusions. An investigation of the properties and distribution of the Coma UCDs finds these objects to be very similar to UCDs discovered in other environments. The Coma UCDs tend to be clustered around giant galaxies in the cluster core and have colors/metallicity that correlate with the host galaxy. With properties and a distribution similar to that of the Coma cluster globular cluster population, we find strong support for a star cluster origin for the majority of the Coma UCDs. However, a few UCDs appear to have stellar population or structural properties which differentiate them from the old star cluster populations found in the Coma cluster, perhaps indicating that UCDs may form through multiple formation channels.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا