Do you want to publish a course? Click here

Triaxial superdeformation in $^{40}$Ar

223   0   0.0 ( 0 )
 Added by Yasutaka Taniguchi
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

Superdeformed (SD) states in $^{40}$Ar have been studied using the deformed-basis antisymmetrized molecular dynamics. Low energy states were calculated by the parity and angular momentum projection (AMP) and the generator coordinate method (GCM). Basis wave functions were obtained by the energy variation with a constraint on the quadrupole deformation parameter $beta$, while other quantities such as triaxiality $gamma$ were optimized by the energy variation. By the GCM calculation, an SD band was obtained just above the ground state (GS) band. The SD band involves a $K^pi = 2^+$ side band due to the triaxiality. The calculated electric quadrupole transition strengths of the SD band reproduce the experimental values appropriately. Triaxiality is significant for understanding low-lying states.



rate research

Read More

We investigate the possible occurrence of the highly-elongated shapes near the yrast line in $^{40}$Ca and $^{41}$Ca at high spins on the basis of the nuclear energy-density functional method. Not only the superdeformed (SD) yrast configuration but the yrare configurations on top of the SD band are described by solving the cranked Skyme-Kohn-Sham equation in the three-dimensional coordinate-space representation. It is suggested that some of the excited SD bands undergo band crossings and develop to the hyperdeformation (HD) beyond $J simeq 25 hbar$ in $^{40}$Ca. We find that the change of triaxiality in response to rotation plays a decisive role for the shape evolution towards HD, and that this is governed by the signature quantum number of the last occupied orbital at low spins. This mechanism can be verified in an experimental observation of the positive-parity SD yrast signature-partner bands in $^{41}$Ca, one of which ($alpha=+1/2$) undergoes crossings with the HD band while the other ($alpha=-1/2$) shows the smooth evolution from the collective rotation at low spins to the non-collective rotation with oblate shape at the termination.
180 - C. Barbieri , N. Rocco , V. Som`a 2019
Neutron and proton spectral functions of $^{40}$Ar, $^{40}$Ca, and $^{48}$Ti isotopes are computed using the ab initio self-consistent Greens function approach. The resulting radii and charge distributions are in good agreement with available experimental data. The spectral functions of Ar and Ti are then utilized to calculate inclusive ($e$,$e$) cross sections within a factorization scheme and are found to correctly reproduce the recent Jefferson Lab measurements. Based on these successful agreements, the weak charged and neutral current double-differential cross sections for neutrino-$^{40}$Ar scattering are predicted in the quasielastic region. Results obtained by replacing the (experimentally inaccessible) neutron spectral distribution of $^{40}$Ar with the (experimentally accessible) proton distribution of $^{48}$Ti are compared and the accuracy of this approximation is assessed.
High intensity monoenergetic muon neutrinos of energy 236 MeV from kaon decay at rest (KDAR) at the medium energy proton accelerator facilities like J-PARC and Fermilab are proposed to be used for making precision measurements of neutrino-nucleus cross sections in $^{12}C$ and $^{40}Ar$ and perform neutrino oscillation experiments in $ u_mu to u_mu$ and $ u_mu to u_e$ modes. In view of these developments, we study the theoretical uncertainties arising due to the nuclear medium effects in the neutrino-nucleus cross sections as well as in the angular and energy distributions of the charged leptons produced in the charged current (CC) induced reactions by $ u_mu$ and $ u_e$ in $^{12}C$ and $^{40}Ar$ in the energy region of $E_{ u_e( u_mu)}<$ 300 MeV. The calculations have been done in a microscopic model using the local density approximation which takes into account the nuclear effects due to the Fermi motion, binding energy and long range correlations. The results are compared with the other calculations available in the literature.
105 - J. Dobaczewski 1998
We present a review of the mean-field approaches describing superdeformed states, which are currently used and/or being developed. As an example, we discuss in more details the properties of superdeformed A~60 nuclei, and present results of calculations for the rotational band in the doubly magic superdeformed nucleus 32S.
It has been debated whether the experimentally-identified superdeformed rotational band in $^{40}$Ar [E. Ideguchi, et al., Phys. Lett. B 686 (2010) 18] has an axially or triaxially deformed shape. Projected shell model calculations with angular-momentum-projection using an axially-deformed basis are performed up to high spins. Our calculated energy levels indicate a perfect collective-rotor behavior for the superdeformed yrast band. However, detailed analysis of the wave functions reveals that the high-spin structure is dominated by mixed 0-, 2-, and 4-quasiparticle configurations. The calculated electric quadrupole transition probabilities reproduce well the known experimental data and suggest a reduced, but still significant, collectivity in the high spin region. The deduced triaxial deformation parameters are small throughout the entire band, suggesting that triaxiality is not very important for this superdeformed band.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا