Do you want to publish a course? Click here

Two-particle spatial correlations in superfluid nuclei

134   0   0.0 ( 0 )
 Added by Nathalie Pillet
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the effect of pairing on two-neutron space correlations in deformed nuclei. The spatial correlations are described by the pairing tensor in coordinate space calculated in the HFB approach. The calculations are done using the D1S Gogny force. We show that the pairing tensor has a rather small extension in the relative coordinate, a feature observed earlier in spherical nuclei. It is pointed out that in deformed nuclei the coherence length corresponding to the pairing tensor has a pattern similar to what we have found previously in spherical nuclei, i.e., it is maximal in the interior of the nucleus and then it is decreasing rather fast in the surface region where it reaches a minimal value of about 2 fm. This minimal value of the coherence length in the surface is essentially determined by the finite size properties of single-particle states in the vicinity of the chemical potential and has little to do with enhanced pairing correlations in the nuclear surface. It is shown that in nuclei the coherence length is not a good indicator of the intensity of pairing correlations. This feature is contrasted with the situation in infinite matter.



rate research

Read More

We present a number conserving particle-hole RPA theory for collective excitations in the transition from normal to superfluid nuclei. The method derives from an RPA theory developed long ago in quantum chemistry using antisymmetric geminal powers, or equivalently number projected HFB states, as reference states. We show within a minimal model of pairing plus monopole interactions that the number conserving particle-hole RPA excitations evolve smoothly across the superfluid phase transition close to the exact results, contrary to particle-hole RPA in the normal phase and quasiparticle RPA in the superfluid phase that require a change of basis at the broken symmetry point. The new formalism can be applied in a straightforward manner to study particle-hole excitations on top of a number projected HFB state.
The spatial dispersion of the single-nucleon wave functions is analyzed using the self-consistent mean-field framework based on nuclear energy density functionals, and with the harmonic oscillator approximation for the nuclear potential. It is shown that the dispersion depends on the radial quantum number n, but displays only a very weak dependence on the orbital angular momentum. An analytic expression is derived for the localization parameter that explicitly takes into account the radial quantum number of occupied single-nucleon states. The conditions for single-nucleon localization and formation of cluster structures are fulfilled in relatively light nuclei with $A leq 30$ and $n=1$ states occupied. Heavier nuclei exhibit the quantum liquid phase of nucleonic matter because occupied levels that originate from $n > 1$ spherical states are largely delocalized. Nevertheless, individual $alpha$-like clusters can be formed from valence nucleons filling single-particle levels originating from $n=1$ spherical mean-field states.
The rapidity dependence of two-particle momentum correlations can be used to probe the viscosity of the liquid produced in heavy nuclei collisions at RHIC. We reexamine this probe in light of the recent experimental analyses of the azimuthal-angle dependence of number correlations, which demonstrate the importance of initial state fluctuations propagated by hydrodynamic flow in these correlations. The NEXSPHERIO model combines fluctuating initial conditions with viscosity-free hydrodynamic evolution and, indeed, has been shown to describe azimuthal correlations. We use this model to compute the number density correlation $R_{2}$ and the momentum current correlation function {it C}, at low transverse momentum in Au+Au collisions at $sqrt{s_{NN}} = $~200 GeV. {it C} is sensitive to details of the collision dynamics. Its longitudinal width is expected to broaden under the influence of viscous effects and narrow in the presence of sizable radial flow. While NEXSPHERIO model qualitatively describes the emergence of a near-side ridge-like structure for both the $R_2$ and {it C} observables, we find that it predicts a longitudinal narrowing of the near side peak of these correlation functions for increasing number of participants in contrast with recent observations by the STAR Collaboration of a significant broadening in most central collisions relative to peripheral collisions.
195 - Alice Ohlson 2015
The discovery of correlations between particles separated by several units of pseudorapidity in high-multiplicity pp and p-Pb collisions, reminiscent of structures observed in Pb-Pb collisions, was a challenge to traditional ideas about collectivity in heavy ion collisions. In order to further explore long-range correlations and provide information to theoretical models, correlations between forward trigger muons and mid-rapidity associated hadrons were measured in p-Pb collisions at $sqrt{s_{mbox{NN}}} = 5.02~mbox{TeV}$. The results demonstrate that the nearside and awayside ridges extend to $Deltaeta sim pm 5$ and that the $v_2$ of muons, obtained from subtracting the correlation functions in high- and low-multiplicity events, is $(16pm6)%$ higher in the Pb-going than in the p-going direction. The results are compared with AMPT simulations.
In central Au-Au collisions at top RHIC energy, two particle correlation measurements with identified hadron trigger have shown attenuation of near side proton triggered jet-like yield at intermediate transverse momentum ($p{_T}$), 2$< p{_T} <$ 6 GeV/$it{c}$. The attenuation has been attributed to the anomalous baryon enhancement observed in the single inclusive measurements at the same $p{_T}$ range. The enhancement has been found to be in agreement with the models invoking coalescence of quarks as a mechanism of hadronization. Baryon enhancement has also been observed at LHC in the single inclusive spectra. We study the consequence of such an enhancement on two particle correlations at LHC energy within the framework of A Multi Phase Transport (AMPT) model that implements quark coalescence as a mode of hadronization. In this paper we have calculated the proton over pion ratio and the near side per trigger yield associated to pion and proton triggers at intermediate $p{_T}$ from String Melting (SM) version of AMPT. Results obtained are contrasted with the AMPT Default (Def.) which does not include coalescence. Baryon enhancement has been observed in AMPT SM at intermediate $p{_T}$. Near side jet-like correlated yield associated to baryon (proton) trigger in the momentum region where baryon generation is enhanced is found to be suppressed as compared to the corresponding yields for the meson (pion) trigger in most central Pb-Pb events. No such effect has been found in the Default version of AMPT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا