Do you want to publish a course? Click here

Modelling the chemical evolution

118   0   0.0 ( 0 )
 Added by Simone Recchi
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Advanced observational facilities allow to trace back the chemical evolution of the Universe, on the one hand, from local objects of different ages and, secondly, by direct observations of redshifted objects. The chemical enrichment serves as one of the cornerstones of cosmological evolution. In order to understand this chemical evolution in morphologically different astrophysical objects models are constructed based on analytical descriptions or numerical methods. For the comparison of their chemical issues, as there are element abundances, gradients, and ratios, with observations not only the present-day values are used but also their temporal evolution from the first era of metal enrichment. Here we will provide some insight into basics of chemical evolution models, highlight advancements, and discuss a few applications.



rate research

Read More

We study the chemical evolution and formation of the Galactic halo through the analysis of its stellar metallicity distribution function and some key elemental abundance patterns. Starting from the two-infall model for the Galaxy, which predicts too few low-metallicity stars, we add a gas outflow during the halo phase with a rate proportional to the star formation rate through a free parameter, lambda. In addition, we consider a first generation of massive zero-metal stars in this two-infall + outflow model adopting two different top-heavy initial mass functions and specific population III yields. The metallicity distribution function of halo stars, as predicted by the two-infall + outflow model shows a good agreement with observations, when the parameter lambda=14 and the time scale for the first infall, out of which the halo formed, is not longer than 0.2 Gyr, a lower value than suggested previously. Moreover, the abundance patterns [X/Fe] vs. [Fe/H] for C, N and alpha-elements O, Mg, Si, S, Ca show a good agreement with the observational data. If population III stars are included, under the assumption of different initial mass functions, the overall agreement of the predicted stellar metallicity distribution function with observational data is poorer than in the case without population III. We conclude that it is fundamental to include both a gas infall and outflow during the halo formation to explain the observed halo metallicity distribution function, in the framework of a model assuming that the stars in the inner halo formed mostly in situ. Moreover, we find that it does not exist a satisfactory initial mass function for population III stars which reproduces the observed halo metallicity distribution function. As a consequence, there is no need for a first generation of only massive stars to explain the evolution of the Galactic halo.
153 - K. Pilkington , B.K. Gibson 2012
We explore a range of chemical evolution models for the Local Group dwarf spheroidal (dSph) galaxy, Carina. A novel aspect of our work is the removal of the star formation history (SFH) as a `free parameter in the modeling, making use, instead, of its colour-magnitude diagram (CMD)-constrained SFH. By varying the relative roles of galactic winds, re-accretion, and ram-pressure stripping within the modeling, we converge on a favoured scenario which emphasises the respective roles of winds and re-accretion. While our model is successful in recovering most elemental abundance patterns, comparable success is not found for all the neutron capture elements. Neglecting the effects of stripping results in predicted gas fractions approximately two orders of magnitude too high, relative to that observed.
Using a suite of simulations (Governato et al. 2010) which successfully produce bulgeless (dwarf) disk galaxies, we provide an analysis of their associated cold interstellar media (ISM) and stellar chemical abundance patterns. A preliminary comparison with observations is undertaken, in order to assess whether the properties of the cold gas and chemistry of the stellar components are recovered successfully. To this end, we have extracted the radial and vertical gas density profiles, neutral hydrogen velocity dispersion, and the power spectrum of structure within the ISM. We complement this analysis of the cold gas with a brief examination of the simulations metallicity distribution functions and the distribution of alpha-elements-to-iron.
283 - Kenta Matsuoka 2009
We present new deep optical spectra of 9 high-z radio galaxies (HzRGs) at z > 2.7 obtained with FORS2 on VLT. These rest-frame ultraviolet spectra are used to infer the metallicity of the narrow-line regions (NLRs) in order to investigate the chemical evolution of galaxies in high-z universe. We focus mainly on the CIV/HeII and CIII]/CIV flux ratios that are sensitive to gas metallicity and ionization parameter. Although the NV emission has been widely used to infer the gas metallicity, it is often too weak to be measured accurately for NLRs. By combining our new spectra with data from the literature, we examine the possible redshift evolution of the NLR metallicity for 57 HzRGs at 1 < z < 4. Based on the comparison between the observed emission-line flux ratios and the results of our photoionization model calculations, we find no significant metallicity evolution in NLRs of HzRGs, up to z ~ 4. Our results imply that massive galaxies had almost completed their chemical evolution at much higher redshift (z > 5). Finally, although we detect strong NV emission lines in 5 HzRGs at z > 2.7, we point out that high NV/HeII ratios are not indicative of high metallicities but correspond to high ionization parameters of gas clouds in NLRs.
152 - Sandra Savaglio 2009
Gamma-ray bursts (GRBs) are the brightest events in the universe. They have been used in the last five years to study the cosmic chemical evolution, from the local universe to the first stars. The sample size is still relatively small when compared to field galaxy surveys. However, GRBs show a universe that is surprising. At z > 2, the cold interstellar medium in galaxies is chemically evolved, with a mean metallicity of about 1/10 solar. At lower redshift (z < 1), metallicities of the ionized gas are relatively low, on average 1/6 solar. Not only is there no evidence of redshift evolution in the interval 0 < z < 6.3, but also the dispersion in the ~ 30 objects is large. This suggests that the metallicity of host galaxies is not the physical quantity triggering GRB events. From the investigation of other galaxy parameters, it emerges that active star-formation might be a stronger requirement to produce a GRB. Several recent striking results strongly support the idea that GRB studies open a new view on our understanding of galaxy formation and evolution, back to the very primordial universe at z ~ 8.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا