No Arabic abstract
These are the lecture notes for the DIMACS Tutorial Limits of Approximation Algorithms: PCPs and Unique Games held at the DIMACS Center, CoRE Building, Rutgers University on 20-21 July, 2009. This tutorial was jointly sponsored by the DIMACS Special Focus on Hardness of Approximation, the DIMACS Special Focus on Algorithmic Foundations of the Internet, and the Center for Computational Intractability with support from the National Security Agency and the National Science Foundation. The speakers at the tutorial were Matthew Andrews, Sanjeev Arora, Moses Charikar, Prahladh Harsha, Subhash Khot, Dana Moshkovitz and Lisa Zhang. The sribes were Ashkan Aazami, Dev Desai, Igor Gorodezky, Geetha Jagannathan, Alexander S. Kulikov, Darakhshan J. Mir, Alantha Newman, Aleksandar Nikolov, David Pritchard and Gwen Spencer.
We study the problem of approximating the value of a Unique Game instance in the streaming model. A simple count of the number of constraints divided by $p$, the alphabet size of the Unique Game, gives a trivial $p$-approximation that can be computed in $O(log n)$ space. Meanwhile, with high probability, a sample of $tilde{O}(n)$ constraints suffices to estimate the optimal value to $(1+epsilon)$ accuracy. We prove that any single-pass streaming algorithm that achieves a $(p-epsilon)$-approximation requires $Omega_epsilon(sqrt{n})$ space. Our proof is via a reduction from lower bounds for a communication problem that is a $p$-ary variant of the Boolean Hidden Matching problem studied in the literature. Given the utility of Unique Games as a starting point for reduction to other optimization problems, our strong hardness for approximating Unique Games could lead to downemph{stream} hardness results for streaming approximability for other CSP-like problems.
We give a new algorithm for Unique Games which is based on purely {em spectral} techniques, in contrast to previous work in the area, which relies heavily on semidefinite programming (SDP). Given a highly satisfiable instance of Unique Games, our algorithm is able to recover a good assignment. The approximation guarantee depends only on the completeness of the game, and not on the alphabet size, while the running time depends on spectral properties of the {em Label-Extended} graph associated with the instance of Unique Games. We further show that on input the integrality gap instance of Khot and Vishnoi, our algorithm runs in quasi-polynomial time and decides that the instance if highly unsatisfiable. Notably, when run on this instance, the standard SDP relaxation of Unique Games {em fails}. As a special case, we also re-derive a polynomial time algorithm for Unique Games on expander constraint graphs. The main ingredient of our algorithm is a technique to effectively use the full spectrum of the underlying graph instead of just the second eigenvalue, which is of independent interest. The question of how to take advantage of the full spectrum of a graph in the design of algorithms has been often studied, but no significant progress was made prior to this work.
These lecture notes endeavour to collect in one place the mathematical background required to understand the properties of kernels in general and the Random Fourier Features approximation of Rahimi and Recht (NIPS 2007) in particular. We briefly motivate the use of kernels in Machine Learning with the example of the support vector machine. We discuss positive definite and conditionally negative definite kernels in some detail. After a brief discussion of Hilbert spaces, including the Reproducing Kernel Hilbert Space construction, we present Mercers theorem. We discuss the Random Fourier Features technique and then present, with proofs, scalar and matrix concentration results that help us estimate the error incurred by the technique. These notes are the transcription of 10 lectures given at IIT Delhi between January and April 2020.
Covering spaces of graphs have long been useful for studying expanders (as graph lifts) and unique games (as the label-extended graph). In this paper we advocate for the thesis that there is a much deeper relationship between computational topology and the Unique Games Conjecture. Our starting point is Linials 2005 observation that the only known problems whose inapproximability is equivalent to the Unique Games Conjecture - Unique Games and Max-2Lin - are instances of Maximum Section of a Covering Space on graphs. We then observe that the reduction between these two problems (Khot-Kindler-Mossel-ODonnell, FOCS 2004; SICOMP, 2007) gives a well-defined map of covering spaces. We further prove that inapproximability for Maximum Section of a Covering Space on (cell decompositions of) closed 2-manifolds is also equivalent to the Unique Games Conjecture. This gives the first new Unique Games-complete problem in over a decade. Our results partially settle an open question of Chen and Freedman (SODA 2010; Disc. Comput. Geom., 2011) from computational topology, by showing that their question is almost equivalent to the Unique Games Conjecture. (The main difference is that they ask for inapproximability over $mathbb{Z}/2mathbb{Z}$, and we show Unique Games-completeness over $mathbb{Z}/kmathbb{Z}$ for large $k$.) This equivalence comes from the fact that when the structure group $G$ of the covering space is Abelian - or more generally for principal $G$-bundles - Maximum Section of a $G$-Covering Space is the same as the well-studied problem of 1-Homology Localization. Although our most technically demanding result is an application of Unique Games to computational topology, we hope that our observations on the topological nature of the Unique Games Conjecture will lead to applications of algebraic topology to the Unique Games Conjecture in the future.
We develop a new framework for generalizing approximation algorithms from the structural graph algorithm literature so that they apply to graphs somewhat close to that class (a scenario we expect is common when working with real-world networks) while still guaranteeing approximation ratios. The idea is to $textit{edit}$ a given graph via vertex- or edge-deletions to put the graph into an algorithmically tractable class, apply known approximation algorithms for that class, and then $textit{lift}$ the solution to apply to the original graph. We give a general characterization of when an optimization problem is amenable to this approach, and show that it includes many well-studied graph problems, such as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum Maximal Matching, Chromatic Number, ($ell$-)Dominating Set, Edge ($ell$-)Dominating Set, and Connected Dominating Set. To enable this framework, we develop new editing algorithms that find the approximately-fewest edits required to bring a given graph into one of several important graph classes (in some cases, also approximating the target parameter of the family). For bounded degeneracy, we obtain a bicriteria $(4,4)$-approximation which also extends to a smoother bicriteria trade-off. For bounded treewidth, we obtain a bicriteria $(O(log^{1.5} n), O(sqrt{log w}))$-approximation, and for bounded pathwidth, we obtain a bicriteria $(O(log^{1.5} n), O(sqrt{log w} cdot log n))$-approximation. For treedepth $2$ (also related to bounded expansion), we obtain a $4$-approximation. We also prove complementary hardness-of-approximation results assuming $mathrm{P} eq mathrm{NP}$: in particular, these problems are all log-factor inapproximable, except the last which is not approximable below some constant factor ($2$ assuming UGC).