Do you want to publish a course? Click here

T35: a small automatic telescope for long-term observing campaigns

117   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The T35 is a small telescope (14) equipped with a large format CCD camera installed in the Sierra Nevada Observatory (SNO) in Southern Spain. This telescope will be a useful tool for the detecting and studying pulsating stars, particularly, in open clusters. In this paper, we describe the automation process of the T35 and show also some images taken with the new instrumentation.



rate research

Read More

69 - Ovidiu Vaduvescu 2005
Even from a light polluted city it is possible to observe Near Earth Asteroids (NEAs) at opposition using a small telescope equipped with a CCD camera. In this paper, we will overview first the major NEA programs, continuing with planning the observations and the data reduction. Second, we will present a NEA follow-up program carried out on the 60-cm telescope at York University Observatory in Toronto, Canada. Part of this program, five NEAs have been observed during ten nights. Their astrometric and photometric data were reduced and sent to the Minor Planet Centre, following which an observatory code was assigned and four batches have been included in the NEODyS database and MPC Circulars. The results are applicable to any other small facility.
223 - G. Hobbs , R. Hollow , D. Champion 2009
The PULSE@Parkes project has been designed to monitor the rotation of radio pulsars over time spans of days to years. The observations are obtained using the Parkes 64-m and 12-m radio telescopes by Australian and international high school students. These students learn the basis of radio astronomy and undertake small projects with their observations. The data are fully calibrated and obtained with the state-of-the-art pulsar hardware available at Parkes. The final data sets are archived and are currently being used to carry out studies of 1) pulsar glitches, 2) timing noise, 3) pulse profile stability over long time scales and 4) the extreme nulling phenomenon. The data are also included in other projects such as gamma-ray observatory support and for the Parkes Pulsar Timing Array project. In this paper we describe the current status of the project and present the first scientific results from the Parkes 12-m radio telescope. We emphasise that this project offers a straightforward means to enthuse high school students and the general public about radio astronomy while obtaining scientifically valuable data sets.
In this paper, the development of the dual mirror Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA) is reviewed. Up to 70 SST, with a primary mirror diameter of 4 m, will be produced and installed at the CTA southern site. These will allow investigation of the gamma-ray sky at the highest energies accessible to CTA, in the range from about 1 TeV to 300 TeV. The telescope presented in this contribution is characterized by two major innovations: the use of a dual mirror Schwarzschild-Couder configuration and of an innovative camera using as sensors either multi-anode photomultipliers (MAPM) or silicon photomultipliers (SiPM). The reduced plate-scale of the telescope, achieved with the dual-mirror optics, allows the camera to be compact (40 cm in diameter), and low-cost. The camera, which has about 2000 pixels of size 6x6 mm^2, covers a field of view of 10{deg}. The dual mirror telescopes and their cameras are being developed by three consortia, ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana, Italy/INAF), GATE (Gamma-ray Telescope Elements, France/Paris Observ.) and CHEC (Compact High Energy Camera, universities in UK, US and Japan) which are merging their efforts in order to finalize an end-to-end design that will be constructed for CTA. A number of prototype structures and cameras are being developed in order to investigate various alternative designs. In this contribution, these designs are presented, along with the technological solutions under study.
104 - A. Catalano , R. Adam , A. Adane 2014
The New IRAM KID Array (NIKA) is a dual-band camera operating with frequency multiplexed arrays of Lumped Element Kinetic Inductance Detectors (LEKIDs) cooled to 100 mK. NIKA is designed to observe the intensity and polarisation of the sky at 1.25 and 2.14 mm from the IRAM 30 m telescope. We present the improvements on the control of systematic effects and astrophysical results made during the last observation campaigns between 2012 and 2014.
We present the longest-term timing study so far of three Rotating Radio Transients (RRATs) - J1819-1458, J1840-1419 and J1913+1330 - performed using the Lovell, Parkes and Green Bank telescopes over the past decade. We study long-term and short- term variations of the pulse emission rate from these RRATs and report a marginal indication of a long-term increase in pulse detection rate over time for PSR J1819-1458 and J1913+1330. For PSR J1913+1330, we also observe a two orders of magnitude variation in the observed pulse detection rates across individual epochs, which may constrain the models explaining the origin of RRAT pulses. PSR J1913+1330 is also observed to exhibit a weak persistent emission mode. We investigate the post-glitch timing properties of J1819-1458 (the only RRAT for which glitches are observed) and discuss the implications for possible glitch models. Its post-glitch over-recovery of the frequency derivative is magnetar-like and similar behaviour is only observed for two other pulsars, both of which have relatively high magnetic field strengths. Following the over-recovery we also observe that some fraction of the pre-glitch frequency derivative is gradually recovered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا