No Arabic abstract
We prove that the horizontal and vertical distributions of the tangent bundle with the Sasaki metric are isocline, the distributions given by the kernels of the horizontal and vertical lifts of the contact form $omega$ from the Heisenberg manifold $(H_3,g)$ to $(TH_3,g^S)$ are not totally geodesic, and the distributions $F^H=L(E_1^H,E_2^H)$ and $F^V=L(E_1^V,E_2^V)$ are totally geodesic, but they are not isocline. We obtain that the horizontal and natural lifts of the curves from the Heisenberg manifold $(H_3,g)$, are geodesics in the tangent bundle endowed with the Sasaki metric $(TH_3,g^s)$, if and only if the curves considered on the base manifold are geodesics. Then, we get two particular examples of geodesics from $(TH_3,g^s)$, which are not horizontal or natural lifts of geodesics from the base manifold $(H_3,g)$.
We find a new class of invariant metrics existing on the tangent bundle of any given almost-Hermitian manifold. We focus here on the case of Riemannian surfaces, which yield new examples of Kahlerian Ricci-flat manifolds in four real dimensions.
We survey on the geometry of the tangent bundle of a Riemannian manifold, endowed with the classical metric established by S. Sasaki 60 years ago. Following the results of Sasaki, we try to write and deduce them by different means. Questions of vector fields, mainly those arising from the base, are related as invariants of the classical metric, contact and Hermitian structures. Attention is given to the natural notion of extension or complete lift of a vector field, from the base to the tangent manifold. Few results are original, but finally new equations of the mirror map are considered.
We find a family of Kahler metrics invariantly defined on the radius $r_0>0$ tangent disk bundle ${{cal T}_{M,r_0}}$ of any given real space-form $M$ or any of its quotients by discrete groups of isometries. Such metrics are complete in the non-negative curvature case and non-complete in the negative curvature case. If $dim M=2$ and $M$ has constant sectional curvature $K eq0$, then the Kahler manifolds ${{cal T}_{M,r_0}}$ have holonomy $mathrm{SU}(2)$; hence they are Ricci-flat. For $M=S^2$, just this dimension, the metric coincides with the Stenzel metric on the tangent manifold ${{cal T}_{S^2}}$, giving us a new most natural description of this well-know metric.
Pure combinatorial models for BPL_n and Gauss map of a combinatorial manifold are described.
Manifold hypotheses are typically used for tasks such as dimensionality reduction, interpolation, or improving classification performance. In the less common problem of manifold estimation, the task is to characterize the geometric structure of the manifold in the original ambient space from a sample. We focus on the role that tangent bundle learners (TBL) can play in estimating the underlying manifold from which data is assumed to be sampled. Since the unbounded tangent spaces natively represent a poor manifold estimate, the problem reduces to one of estimating regions in the tangent space where it acts as a relatively faithful linear approximator to the surface of the manifold. Local PCA methods, such as the Mixtures of Probabilistic Principal Component Analyzers method of Tipping and Bishop produce a subset of the tangent bundle of the manifold along with an assignment function that assigns points in the training data used by the TBL to elements of the estimated tangent bundle. We formulate three methods that use the data assigned to each tangent space to estimate the underlying bounded subspaces for which the tangent space is a faithful estimate of the manifold and offer thoughts on how this perspective is theoretically grounded in the manifold assumption. We seek to explore the conceptual and technical challenges that arise in trying to utilize simple TBL methods to arrive at reliable estimates of the underlying manifold.