Do you want to publish a course? Click here

Light vector meson octet-decuplet baryon vertices in QCD

297   0   0.0 ( 0 )
 Added by Mustafa Savci
 Publication date 2010
  fields
and research's language is English
 Authors T. M. Aliev




Ask ChatGPT about the research

The strong coupling constants between light vector mesons and octet-decuplet baryons are calculated in framework of the light cone QCD sum rules, taking into account SU(3) flavor symmetry breaking effects. It is shown that all strong coupling constants can be represented in terms of a single universal function. Size of the SU(3) symmetry breaking effects are estimated.



rate research

Read More

The s-wave interactions of the baryon decuplet with the octet of pseudoscalar mesons is studied in a unitarized coupled channel approach. We obtain a fair agreement for mass and width of several 3/2- resonances. In particular, the Xi(1820), the Lambda(1520) and the Sigma(1670) states are well reproduced. Other resonances are predicted and also the couplings of the observed resonances to the various channels are evaluated.
We have systematically investigated the decuplet (T) to octet (B) baryon ($Trightarrow Bgamma$) transition magnetic moments to the next-to-next-to-leading order and electric quadruple moments to the next-to-leading order in the framework of the heavy baryon chiral perturbation theory. Our calculation includes the contributions from both the intermediate decuplet and octet baryon states in the loops. Our results show reasonably good convergence of the chiral expansion and agreement with the experimental data. The analytical expressions may be useful to the chiral extrapolation of the lattice simulations of the decuplet electromagnetic properties.
131 - T. M. Aliev 2009
Using the most general form of the interpolating current of the baryons, the strong coupling constants of the light vector mesons with the octet baryons are calculated within the light cone QCD sum rules. The SU(3)_f symmetry breaking effects are taken into account in the calculations. It is shown that each of the electric and magnetic coupling constants can be described in terms of three universal functions. A detailed comparison of the results of this work on aforementioned couplings with the existing theoretical results is presented.
265 - T. M. Aliev ((1 2013
The magnetic dipole G_M(Q^2), electric quadrupole G_E(Q^2), and Coulomb quadrupole G_C(Q^2) form factors, describing the spin-3/2 to spin-1/2 electromagnetic transitions, are investigated within the light cone QCD sum rules. The Q^2 dependence of these form factors, as well as ratios of electric quadrupole and Coulomb quadrupole form factors to the magnetic dipole form factors are studied. We also compare our results on the magnetic dipole form factor with the prediction of the covariant spectator quark model.
We evaluate the $pi N!N$, $piSigmaSigma$, $piLambdaSigma$, $KLambda N$ and $K Sigma N $ coupling constants and the corresponding monopole masses in lattice QCD with two flavors of dynamical quarks. The parameters representing the SU(3)-flavor symmetry are computed at the point where the three quark flavors are degenerate at the physical $s$-quark mass. In particular, we obtain $alphaequiv F/(F+D)=0.395(6)$. The quark-mass dependences of the coupling constants are obtained by changing the $u$- and the $d$-quark masses. We find that the SU(3)-flavor parameters have weak quark-mass dependence and thus the SU(3)-flavor symmetry is broken by only a few percent at each quark-mass point we consider.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا