Do you want to publish a course? Click here

Phase Measurement of Resonant Two-Photon Ionization in Helium

331   0   0.0 ( 0 )
 Added by Marko Swoboda
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study resonant two-color two-photon ionization of Helium via the 1s3p 1P1 state. The first color is the 15th harmonic of a tunable titanium sapphire laser, while the second color is the fundamental laser radiation. Our method uses phase-locked high-order harmonics to determine the {it phase} of the two-photon process by interferometry. The measurement of the two-photon ionization phase variation as a function of detuning from the resonance and intensity of the dressing field allows us to determine the intensity dependence of the transition energy.



rate research

Read More

211 - J. Feist , S. Nagele , R. Pazourek 2008
We present accurate time-dependent ab initio calculations on fully differential and total integrated (generalized) cross sections for the nonsequential two-photon double ionization of helium at photon energies from 40 to 54 eV. Our computational method is based on the solution of the time-dependent Schroedinger equation and subsequent projection of the wave function onto Coulomb waves. We compare our results with other recent calculations and discuss the emerging similarities and differences. We investigate the role of electronic correlation in the representation of the two-electron continuum states, which are used to extract the ionization yields from the fully correlated final wave function. In addition, we study the influence of the pulse length and shape on the cross sections in time-dependent calculations and address convergence issues.
Multiphoton ionization provides a clear window into the nature of electron correlations in the helium atom. In the present study, the final state energy range extends up to the region near the $N=2$ and $N=3$ ionization thresholds, where two-photon ionization proceeds via continuum intermediate states above the lowest threshold. Our calculations are performed using multichannel quantum defect theory (MQDT) and the streamlined R-matrix method. The sum and integration over all intermediate states in the two-photon ionization amplitude is evaluated using the inhomogeneous R-matrix method developed by Robicheaux and Gao. The seamless connection of that method with MQDT allows us to present high resolution spectra of the final state Rydberg resonances. Our analysis classifies the resonances above the $N=2$ threshold in terms of their group theory quantum numbers. Their dominant decay channels are found to obey the previously conjectured propensity rule far more weakly for these even parity states than was observed for the odd-parity states relevant to single photon ionization.
153 - R. Pazourek , J. Feist , S. Nagele 2011
We analyze two-photon double ionization of helium in both the nonsequential and sequential regime. We show that the energy spacing between the two emitted electrons provides the key parameter that controls both the energy and the angular distribution and reveals the universal features present in both the nonsequential and sequential regime. This universality, i.e., independence of photon energy, is a manifestation of the continuity across the threshold for sequential double ionization. For all photon energies, the energy distribution can be described by a universal shape function that contains only the spectral and temporal information entering second-order time-dependent perturbation theory. Angular correlations and distributions are found to be more sensitive to the photon energy. In particular, shake-up interferences have a large effect on the angular distribution. Energy spectra, angular distributions parameterized by the anisotropy parameters, and total cross sections presented in this paper are obtained by fully correlated time-dependent ab initio calculations.
We present an experimental study on the photoionization dynamics of non-resonant one-color two-photon single valence ionization of neutral argon atoms. Using 9.3 eV photons produced via high harmonic generation and a 3-D momentum imaging spectrometer, we detect the photoelectrons and ions produced from non-resonant two-photon ionization in coincidence. Photoionization from the $3p$ orbital produces a photoelectron scattering wave function with $p$ and $f$ partial wave components, which interfere and result in a photoelectron angular distribution with peak amplitude perpendicular to the VUV polarization. The comparison between the present results and two previous sets of theoretical calculations [Pan, C. & Starace, A. F. (1991). $textit{Physical Review A}$, 44(1), 324., and Moccia, R., Rahman, N. K., & Rizzo, A. (1983). $textit{Journal of Physics B: Atomic and Molecular Physics}$, 16(15), 2737.] indicates that electron-electron correlation contributes appreciably to the two-photon ionization dynamics.
Measurements of the phase of two-photon matrix elements are presented for near-resonant two-color ionization of helium. A tunable, narrow-bandwidth, near-infrared (NIR) laser source is used for extreme ultra-violet (XUV) high-harmonic generation (HHG). The 15th harmonic of the laser is used within (1+1) XUV+NIR two-photon ionization, and tuned in and out of resonance with members of the 1s$n$p $^1$P$_1$ ($n=3,4,5$) Rydberg series. Rapid changes in the phase of the two-photon matrix elements around resonances and at the mid-way point between two resonances are observed, encoding the relative importance of resonant and near-resonant two-color ionization. Similar effects are observed for (1+2) XUV+NIR three-photon ionization. The experimental results are compared to a perturbative model and numerical solution of the time-dependent Schrodinger equation (TDSE) in the single active electron (SAE) approximation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا