Do you want to publish a course? Click here

Double-partition Quantum Cluster Algebras

121   0   0.0 ( 0 )
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but subclasses have been studied previously by other authors. The algebras are indexed by double partitions or double flag varieties. Equivalently, they are indexed by broken lines $L$. By grouping together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis. This is the final version, where some arguments have been expanded and/or improved and several typos corrected. Full bibliographic details: Journal of Algebra (2012), pp. 172-203 DOI information: 10.1016/j.jalgebra.2012.09.015



rate research

Read More

The aim of the present paper is to introduce a generalized quantum cluster character, which assigns to each object V of a finitary Abelian category C over a finite field FF_q and any sequence ii of simple objects in C the element X_{V,ii} of the corresponding algebra P_{C,ii} of q-polynomials. We prove that if C was hereditary, then the assignments V-> X_{V,ii} define algebra homomorphisms from the (dual) Hall-Ringel algebra of C to the P_{C,ii}, which generalize the well-known Feigin homomorphisms from the upper half of a quantum group to q-polynomial algebras. If C is the representation category of an acyclic valued quiver (Q,d) and ii=(ii_0,ii_0), where ii_0 is a repetition-free source-adapted sequence, then we prove that the ii-character X_{V,ii} equals the quantum cluster character X_V introduced earlier by the second author in [29] and [30]. Using this identification, we deduce a quantum cluster structure on the quantum unipotent cell corresponding to the square of a Coxeter element. As a corollary, we prove a conjecture from the joint paper [5] of the first author with A. Zelevinsky for such quantum unipotent cells. As a byproduct, we construct the quantum twist and prove that it preserves the triangular basis introduced by A. Zelevinsky and the first author in [6].
We study monoidal categorifications of certain monoidal subcategories $mathcal{C}_J$ of finite-dimensional modules over quantum affine algebras, whose cluster algebra structures coincide and arise from the category of finite-dimensional modules over quiver Hecke algebra of type A${}_infty$. In particular, when the quantum affine algebra is of type A or B, the subcategory coincides with the monoidal category $mathcal{C}_{mathfrak{g}}^0$ introduced by Hernandez-Leclerc. As a consequence, the modules corresponding to cluster monomials are real simple modules over quantum affine algebras.
111 - P. Bouwknegt , K. Pilch 1998
We discuss some aspects of the deformed W-algebras W_{q,t}[g]. In particular, we derive an explicit formula for the Kac determinant, and discuss the center when t^2 is a primitive k-th root of unity. The relation of the structure of W_{q,t}[g] to the representation ring of the quantum affine algebra U_q(hat g), as discovered recently by Frenkel and Reshetikhin, is further elucidated in some examples.
We describe an infinite family of non-Plucker cluster variables inside the double Bruhat cell cluster algebra defined by Berenstein, Fomin, and Zelevinsky. These cluster variables occur in a family of subalgebras of the double Bruhat cell cluster algebra which we call Double Rim Hook (DRH) cluster algebras. We discover that all of the cluster variables are determinants of matrices of special form. We conjecture that all the cluster variables of the double Bruhat-cell cluster algebra have similar determinant form. We notice the resemblance between our staircase diagram and Auslander-Reiten quivers.
147 - B. Feigin , M. Jimbo , E. Mukhin 2020
The deformed $mathcal W$ algebras of type $textsf{A}$ have a uniform description in terms of the quantum toroidal $mathfrak{gl}_1$ algebra $mathcal E$. We introduce a comodule algebra $mathcal K$ over $mathcal E$ which gives a uniform construction of basic deformed $mathcal W$ currents and screening operators in types $textsf{B},textsf{C},textsf{D}$ including twisted and supersymmetric cases. We show that a completion of algebra $mathcal K$ contains three commutative subalgebras. In particular, it allows us to obtain a commutative family of integrals of motion associated with affine Dynkin diagrams of all non-exceptional types except $textsf{D}^{(2)}_{ell+1}$. We also obtain in a uniform way deformed finite and affine Cartan matrices in all classical types together with a number of new examples, and discuss the corresponding screening operators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا