Do you want to publish a course? Click here

Excitonic Aharonov-Bohm Effect in Isotopically Pure 70Ge/Si Type-II Quantum Dots

91   0   0.0 ( 0 )
 Added by Satoru Miyamoto
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a magneto-photoluminescence study of isotopically pure 70Ge/Si self-assembled type-II quantum dots. Oscillatory behaviors attributed to the Aharonov-Bohm effect are simultaneously observed for the emission energy and intensity of excitons subject to an increasing magnetic field. When the magnetic flux penetrates through the ring-like trajectory of an electron moving around each quantum dot, the ground state of an exciton experiences a change in its angular momentum. Our results provide the experimental evidence for the phase coherence of a localized electron wave function in group-IV Ge/Si self-assembled quantum structures.



rate research

Read More

It is commonly believed that the Aharonov-Bohm (AB) effect is a typical feature of the motion of a charged particle interacting with the electromagnetic vector potential. Here we present a magnetophotoluminescence study of type-II InP/GaAs self-assembled quantum dots, unambiguously revealing the Aharonov-Bohm-type oscillations for neutral excitons when the hole ground state changes its angular momentum from lh = 0 to lh = 1, 2, and 3. The hole ring parameters derived from a simple model are in excellent agreement with the structural parameters for this system.
135 - G. Y. Chen , Y. N. Chen , 2006
We propose a theoretical model to study the single-electron spectra of the concentric quantum double ring fabricated lately by self-assembled technique. Exact diagonalization method is employed to examine the Aharonov-Bohm effect in the concentric double ring. It is found the appearance of the AB oscillation in total energy depends on the strength of the screened potential. Variations of the energy spectra with the presence of coulomb impurities located at inner or outer ring are also investigated.
Quantum interferometers are powerful tools for probing the wave-nature and exchange statistics of indistinguishable particles. Of particular interest are interferometers formed by the chiral, one-dimensional (1D) edge channels of the quantum Hall effect (QHE) that guide electrons without dissipation. Using quantum point contacts (QPCs) as beamsplitters, these 1D channels can be split and recombined, enabling interference of charged particles. Such quantum Hall interferometers (QHIs) can be used for studying exchange statistics of anyonic quasiparticles. In this study we develop a robust QHI fabrication technique in van der Waals (vdW) materials and realize a graphene-based Fabry-Perot (FP) QHI. By careful heterostructure design, we are able to measure pure Aharonov-Bohm (AB) interference effect in the integer QHE, a major technical challenge in finite size FP interferometers. We find that integer edge modes exhibit high visibility interference due to relatively large velocities and long phase coherence lengths. Our QHI with tunable QPCs presents a versatile platform for interferometer studies in vdW materials and enables future experiments in the fractional QHE.
We define two laterally gated small quantum dots (~ 15 electrons) in an Aharonov-Bohm geometry in which the coupling between the two dots can be broadly changed. For weakly coupled quantum dots we find Aharonov-Bohm oscillations. In an intermediate coupling regime we concentrate on the molecular states of the double dot and extract the magnetic field dependence of the coherent coupling.
We present magnetotransport measurements in HgTe quantum well with inverted band structure, which expected to be a two-dimensional topological insulator having the bulk gap with helical gapless states at the edge. The negative magnetoresistance is observed in the local and nonlocal resistance configuration followed by the periodic oscillations damping with magnetic field. We attribute such behaviour to Aharonov-Bohm effect due to magnetic flux through the charge carrier puddles coupled to the helical edge states. The characteristic size of these puddles is about 100 nm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا