We show that the mechanical effect of light on the orientational ordering of the crystalline axis of a mesophase can be used to control the dynamics of the optical response of liquid crystal infiltrated photonic structures. The demonstration is made using a one-dimensional periodic structure whose periodicity is broken by the presence of a nematic liquid crystal defect layer. In this study we report on output light polarization and/or intensity dynamics that depends on the initial molecular ordering and incident light wavelength and intensity.