Do you want to publish a course? Click here

Searching for prompt signatures of nearby core-collapse supernovae by a joint analysis of neutrino and gravitational-wave data

109   0   0.0 ( 0 )
 Added by Isabel Leonor
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the science motivations and prospects for a joint analysis of gravitational-wave (GW) and low-energy neutrino data to search for prompt signals from nearby supernovae (SNe). Both gravitational-wave and low-energy neutrinos are expected to be produced in the innermost region of a core-collapse supernova, and a search for coincident signals would probe the processes which power a supernova explosion. It is estimated that the current generation of neutrino and gravitational-wave detectors would be sensitive to Galactic core-collapse supernovae, and would also be able to detect electromagnetically dark SNe. A joint GW-neutrino search would enable improvements to searches by way of lower detection thresholds, larger distance range, better live-time coverage by a network of GW and neutrino detectors, and increased significance of candidate detections. A close collaboration between the GW and neutrino communities for such a search will thus go far toward realizing a much sought-after astrophysics goal of detecting the next nearby supernova.



rate research

Read More

We present gravitational wave (GW) signal predictions from four 3D multi-group neutrino hydrodynamics simulations of core-collapse supernovae of progenitors with 11.2 Msun, 20 Msun, and 27 Msun. GW emission in the pre-explosion phase strongly depends on whether the post-shock flow is dominated by the standing accretion shock instability (SASI) or convection and differs considerably from 2D models. SASI activity produces a strong signal component below 250 Hz through asymmetric mass motions in the gain layer and a non-resonant coupling to the proto-neutron star (PNS). Both convection- and SASI-dominated models show GW emission above 250 Hz, but with considerably lower amplitudes than in 2D. This is due to a different excitation mechanism for high-frequency l=2 motions in the PNS surface, which are predominantly excited by PNS convection in 3D. Resonant excitation of high-frequency surface g-modes in 3D by mass motions in the gain layer is suppressed compared to 2D because of smaller downflow velocities and a lack of high-frequency variability in the downflows. In the exploding 20 Msun model, shock revival results in enhanced low-frequency emission due to a change of the preferred scale of the convective eddies in the PNS convection zone. Estimates of the expected excess power in two frequency bands suggests that second-generation detectors will only be able to detect very nearby events, but that third-generation detectors could distinguish SASI- and convection-dominated models at distances of ~10 kpc.
260 - Colter Richardson 2021
We study the properties of the gravitational wave (GW) emission between $10^{-5}$ Hz and $50$ Hz (which we refer to as low-frequency emission) from core-collapse supernovae, in the context of studying such signals in laser interferometric data as well as performing multi-messenger astronomy. We pay particular attention to the GW linear memory, which is when the signal amplitude does not return to zero after the GW burst. Based on the long term simulation of a core-collapse supernova of a solar-metallicity star with a zero-age main sequence mass of 15 solar masses, we discuss the spectral properties, the memorys dependence on observer position and the polarization of low-frequency GWs from slowly non (or slowly) rotating core-collapse supernovae. We make recommendations on the angular spacing of the orientations needed to properly produce results that are averaged over multiple observer locations by investigating the angular dependence of the GW emission. We propose semi-analytical models that quantify the relationship between the bulk motion of the supernova shock-wave and the GW memory amplitude. We discuss how to extend neutrino generated GW signals from numerical simulations that were terminated before the neutrino emission has subsided. We discuss how the premature halt of simulations and the non-zero amplitude of the GW memory can induce artefacts during the data analysis process. Lastly, we also investigate potential solutions and issues in the use of taperings for both ground and space-based interferometers.
While gravitational waves have been detected from mergers of binary black holes and binary neutron stars, signals from core collapse supernovae, the most energetic explosions in the modern Universe, have not been detected yet. Here we present a new method to analyse the data of the LIGO, Virgo and KAGRA network to enhance the detection efficiency of this category of signals. The method takes advantage of a peculiarity of the gravitational wave signal emitted in the core collapse supernova and it is based on a classification procedure of the time-frequency images of the network data performed by a convolutional neural network trained to perform the task to recognize the signal. We validate the method using phenomenological waveforms injected in Gaussian noise whose spectral properties are those of the LIGO and Virgo advanced detectors and we conclude that this method can identify the signal better than the present algorithm devoted to select gravitational wave transient signal.
We present a broadband spectrum of gravitational waves from core-collapse supernovae (CCSNe) sourced by neutrino emission asymmetries for a series of full 3D simulations. The associated gravitational wave strain probes the long-term secular evolution of CCSNe and small-scale turbulent activity and provides insight into the geometry of the explosion. For non-exploding models, both the neutrino luminosity and the neutrino gravitational waveform will encode information about the spiral SASI. The neutrino memory will be detectable for a wide range of progenitor masses for a galactic event. Our results can be used to guide near-future decihertz and long-baseline gravitational-wave detection programs, including aLIGO, the Einstein Telescope, and DECIGO.
A mechanism of formation of gravitational waves in the Universe is considered for a nonspherical collapse of matter. Nonspherical collapse results are presented for a uniform spheroid of dust and a finite-entropy spheroid. Numerical simulation results on core-collapse supernova explosions are presented for the neutrino and magnetorotational models. These results are used to estimate the dimensionless amplitude of the gravitational wave with a frequency u ~1300 Hz, radiated during the collapse of the rotating core of a pre-supernova with a mass of 1:2M(sun) (calculated by the authors in 2D). This estimate agrees well with many other calculations (presented in this paper) that have been done in 2D and 3D settings and which rely on more exact and sophisticated calculations of the gravitational wave amplitude. The formation of the large-scale structure of the Universe in the Zeldovich pancake model involves the emission of very long-wavelength gravitational waves. The average amplitude of these waves is calculated from the simulation, in the uniform spheroid approximation, of the nonspherical collapse of noncollisional dust matter, which imitates dark matter. It is noted that a gravitational wave radiated during a core-collapse supernova explosion in our Galaxy has a sufficient amplitude to be detected by existing gravitational wave telescopes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا