No Arabic abstract
Spectrum of the Pauli projector of a quantum many-body system is studied. It is proven that the kern of the complete many-body projector is identical to the kern of the sum of two-body projectors. Since the kern of the many-body Pauli projector defines an allowed subspace of the complete Hilbert space, it is argued that a truncation of the many-body model space following the two-body Pauli projectors is a natural way when solving the Schr{o}dinger equation for the many-body system. These relations clarify a role of the many-body Pauli forces in a multicluster system.
The Complete Manifold of Ground State Eigenfunctions for the Purely Magnetic 2D Pauli Operator is considered as a by-product of the new reduction found by the present authors few years ago for the Algebrogeometric Inverse Spectral Data (i.e. Riemann Surfaces and Divisors). This reduction is associated with the (2+1) Soliton Hierarhy containing a 2D analog of the famous Burgers System. This article contains also exposition of the previous works made since 1980 including the first topological ideas in the space of quasimomenta. We present here also new results dedicated to the self-adjoint boundary problems for Pauli Operator. The 2D zero level nonspectral Bloch-Floquet functions give discrete points of additional spectrum similar to the boundary states of finite-gap 1D potentials in the gaps.
We propose an index for pairs of a unitary map and a clustering state on many-body quantum systems. We require the map to conserve an integer-valued charge and to leave the state, e.g. a gapped ground state, invariant. This index is integer-valued and stable under perturbations. In general, the index measures the charge transport across a fiducial line. We show that it reduces to (i) an index of projections in the case of non-interacting fermions, (ii) the charge density for translational invariant systems, and (iii) the quantum Hall conductance in the two-dimensional setting without any additional symmetry. Example (ii) recovers the Lieb-Schultz-Mattis theorem, and (iii) provides a new and short proof of quantization of Hall conductance in interacting many-body systems.
We study the many body quantum evolution of bosonic systems in the mean field limit. The dynamics is known to be well approximated by the Hartree equation. So far, the available results have the form of a law of large numbers. In this paper we go one step further and we show that the fluctuations around the Hartree evolution satisfy a central limit theorem. Interestingly, the variance of the limiting Gaussian distribution is determined by a time-dependent Bogoliubov transformation describing the dynamics of initial coherent states in a Fock space representation of the system.
We consider the many-body quantum evolution of a factorized initial data, in the mean-field regime. We show that fluctuations around the limiting Hartree dynamics satisfy large deviation estimates, that are consistent with central limit theorems that have been established in the last years.
We present a new proof of the convergence of the N-particle Schroedinger dynamics for bosons towards the dynamics generated by the Hartree equation in the mean-field limit. For a restricted class of two-body interactions, we obtain convergence estimates uniform in the Planck constant , up to an exponentially small remainder. For h=0, the classical dynamics in the mean-field limit is given by the Vlasov equation.