Do you want to publish a course? Click here

Self-consistency and collective effects in semiclassical pairing theory

102   0   0.0 ( 0 )
 Added by Alberto Dellafiore
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

A simple model, in which nuclei are represented as homogeneous spheres of symmetric nuclear matter, is used to study the effects of a self-consistent pairing interaction on the nuclear response. Effects due to the finite size of nuclei are suitably taken into account. The semiclassical equations of motion derived in a previous paper for the time-dependent Hartree-Fock-Bogoliubov problem are solved in an improved (linear) approximation in which the pairing field is allowed to oscillate and to become complex. The new solutions are in good agreement with the old ones and also with the result of well-known quantum approaches. The role of the Pauli principle in eliminating one possible set of solutions is also discussed. The pairing-field fluctuations have two main effects: they restore the particle-number symmetry which is broken in the constant-$Delta$ approximation and introduce the possibility of collective eigenfrequencies of the system due to the pairing interaction. A numerical study with values of parameters appropriate for nuclei, shows an enhancement of the density-density strength function in the region of the low-energy giant octupole resonance, while no similar effect is present in the region of the high-energy octupole resonance and for the giant monopole and quadrupole resonances.



rate research

Read More

We present a new analysis of the pairing vibrations around 56Ni, with emphasis on odd-odd nuclei. This analysis of the experimental excitation energies is based on the subtraction of average properties that include the full symmetry energy together with volume, surface and Coulomb terms. The results clearly indicate a collective behavior of the isovector pairing vibrations and do not support any appreciable collectivity in the isoscalar channel.
92 - Carsten Greiner 2002
We give a reminder on the major inputs of microscopic hadronic transport models and on the physics aims when describing various aspects of relativistic heavy ion collisions at SPS energies. We then first stress that the situation of particle ratios being reproduced by a statistical description does not necessarily mean a clear hint for the existence of a fully isotropic momentum distribution at hadrochemical freeze-out. Second, a short discussion on the status of strangeness production is given. Third we demonstrate the importance of a new collective mechanism for producing (strange) antibaryons within a hadronic description, which guarantees sufficiently fast chemical equilibration.
In addition to shape oscillations, low-energy excitation spectra of deformed nuclei are also influenced by pairing vibrations. The simultaneous description of these collective modes and their coupling has been a long-standing problem in nuclear structure theory. Here we address the problem in terms of self-consistent mean-field calculations of collective deformation energy surfaces, and the framework of the interacting boson approximation. In addition to quadrupole shape vibrations and rotations, the explicit coupling to pairing vibrations is taken into account by a boson-number non-conserving Hamiltonian, specified by a choice of a universal density functional and pairing interaction. An illustrative calculation for $^{128}$Xe and $^{130}$Xe shows the importance of dynamical pairing degrees of freedom, especially for structures built on low-energy $0^+$ excited states, in $gamma$-soft and triaxial nuclei.
Stimulated by the still puzzling competition between spin-singlet and spin-triplet pairing in nuclei, the 3SD1 neutron-proton pairing is investigated in the framework of BCS theory of nuclear matter. The medium polarization effects are included in the single particle spectrum and also in the pairing interaction starting from the G-matrix, calculated in the Brueckner-Hartree-Fock approximation. The vertex corrections due to spin and isospin collective excitations of the medium are determined from the Bethe-Salpeter equation in the RPA limit, taking into account the tensor correlations. It is found that the self-energy corrections confine the superfluid state to very low-density, while remarkably quenching the magnitude of the energy gap, while the induced interaction has an attractive effect. The interplay between spin-singlet and spin-triplet pairing is discussed in nuclear matter as well as in finite nuclei.
The underlying structure of low-lying collective bands of atomic nuclei is discussed from a novel perspective on the interplay between single-particle and collective degrees of freedom, by utilizing state-of-the-art configuration interaction calculations on heavy nuclei. Besides the multipole components of the nucleon-nucleon interaction that drive collective modes forming those bands, the monopole component is shown to control the resistance against such modes. The calculated structure of 154Sm corresponds to coexistence between prolate and triaxial shapes, while that of 166Er exhibits a deformed shape with a strong triaxial instability. Both findings differ from traditional views based on beta/gamma vibrations. The formation of collective bands is shown to be facilitated from a self-organization mechanism.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا