Do you want to publish a course? Click here

NLO QCD corrections to processes with multiple electroweak bosons

145   0   0.0 ( 0 )
 Added by Dieter Zeppenfeld
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

The VBFNLO program package is a collection of Monte Carlo programs for the calculation of NLO QCD corrections to vector boson fusion cross sections, double and triple vector boson production, or the production of two electroweak bosons in association with an additional jet. An overview is given of the processes and features implemented in VBFNLO. WWgamma and Wgamma jet production are discussed as examples.



rate research

Read More

The relevance of single-W and single-Z production processes at hadron colliders is well known: in the present paper the status of theoretical calculations of Drell-Yan processes is summarized and some results on the combination of electroweak and QCD corrections to a sample of observables of the process $p p to W^pm to mu^pm + X$ at the LHC are discussed. The phenomenological analysis shows that a high-precision knowledge of QCD and a careful combination of electroweak and strong contributions is mandatory in view of the anticipated LHC experimental accuracy. One of the authors (O.N.) dedicates these notes to Prof. S. Jadach, in honour of his 60th birthday and grateful for all that Prof. Jadach taught him during their fruitful collaboration.
The next-to-leading-order electroweak corrections to $ppto l^+l^-/bar u u+gamma+X$ production, including all off-shell effects of intermediate Z bosons in the complex-mass scheme, are calculated for LHC energies, revealing the typically expected large corrections of tens of percent in the TeV range. Contributions from quark-photon and photon-photon initial states are taken into account as well, but their impact is found to be moderate or small. Moreover, the known next-to-leading-order QCD corrections are reproduced. In order to separate hard photons from jets, both a quark-to-photon fragmentation function a la Glover/Morgan and Frixiones cone isolation are employed. The calculation is available in the form of Monte Carlo programs allowing for the evaluation of arbitrary differential cross sections. Predictions for integrated cross sections are presented for the LHC at 7 TeV, 8 TeV, and 14 TeV, and differential distributions are discussed at 14 TeV for bare muons and dressed leptons. Finally, we consider the impact of anomalous $ZZgamma$ and $Zgammagamma$ couplings.
143 - R. Bonciani , T. Jezo , M. Klasen 2015
We present the calculation of the NLO QCD corrections to the electroweak production of top-antitop pairs at the CERN LHC in the presence of a new neutral gauge boson. The corrections are implemented in the parton shower Monte Carlo program POWHEG. Standard Model (SM) and new physics interference effects are properly taken into account. QED singularities, first appearing at this order, are consistently subtracted. Numerical results are presented for SM and $Z$ total cross sections and distributions in invariant mass, transverse momentum, azimuthal angle and rapidity of the top-quark pair. The remaining theoretical uncertainty from scale and PDF variations is estimated, and the potential of the charge asymmetry to distinguish between new physics models is investigated for the Sequential SM and a leptophobic topcolor model.
The implementation of the full next-to-leading order (NLO) QCD corrections to electroweak Higgs boson plus three jet production at hadron colliders such as the LHC within the Matchbox NLO framework of the Herwig++ event generator is discussed. We present numerical results for integrated cross sections and kinematic distributions.
258 - S. Actis , G. Passarino , C. Sturm 2008
Results for the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions. Artificially large threshold effects are avoided working in the complex-mass scheme. The numerical impact at LHC (Tevatron) energies is explored for Higgs mass values up to 500 GeV (200 GeV). Assuming a complete factorization of the electroweak corrections, one finds a +5 % shift with respect to the NNLO QCD cross section for a Higgs mass of 120 GeV both at the LHC and the Tevatron. Adopting two different factorization schemes for the electroweak effects, an estimate of the corresponding total theoretical uncertainty is computed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا